DHOFAR UNIVERSITY

VISION FOR THE FUTURE

Catalogue
2013–2014

Salalah
Sultanate of Oman
Notice

I. Information in this catalogue applies to the academic year 2013-14 as of September 1, 2013. The University reserves the right to make changes without prior notice in programs, course offerings, academic requirements, and teaching staff as the need arises.

II. The catalog has been drafted to conform to related Omani laws and Ministry of Higher Education (MoHE) rules and regulations. In the event of a contradiction, related Omani laws and MoHE rules and regulations take precedence.

Student Responsibility for Catalogue Information

Students are responsible for reading the information in this catalogue. Failure to read and comply with college and university regulations will not exempt students from whatever penalties they may incur.

Dhofar University Contact Information

PO Box 2509
Postal Code 211
Salalah
Sultanate of Oman

Telephone (968) 23 23 70 00
Fax (968) 23 23 77 77
E-mail info@du.edu.om

This catalogue can also be viewed at http://www.du.edu.om
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLLEGES ACADEMIC CALENDAR 2013-2014</td>
<td>1</td>
</tr>
<tr>
<td>FP ACADEMIC CALENDAR 2013-2014</td>
<td>2</td>
</tr>
<tr>
<td>BOARD OF TRUSTEES</td>
<td>3</td>
</tr>
<tr>
<td>DHOFAR UNIVERSITY AN OVERVIEW</td>
<td>4</td>
</tr>
<tr>
<td>UNIVERSITY OFFICERS</td>
<td>5</td>
</tr>
<tr>
<td>THE UNIVERSITY</td>
<td>9</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>9</td>
</tr>
<tr>
<td>VISION</td>
<td>9</td>
</tr>
<tr>
<td>MISSION</td>
<td>9</td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>9</td>
</tr>
<tr>
<td>VALUES</td>
<td>9</td>
</tr>
<tr>
<td>ADMISSION OF UNIVERSITY EMPLOYEES</td>
<td>10</td>
</tr>
<tr>
<td>CAMPUS FACILITIES</td>
<td>10</td>
</tr>
<tr>
<td>LOCATION AND CLIMATE</td>
<td>10</td>
</tr>
<tr>
<td>ADMISSION POLICIES AND PROCEDURES</td>
<td>10</td>
</tr>
<tr>
<td>ADMISSION REQUIREMENTS</td>
<td>10</td>
</tr>
<tr>
<td>APPLICATION PROCEDURE</td>
<td>11</td>
</tr>
<tr>
<td>SPECIAL AND AUDIT STUDENTS</td>
<td>11</td>
</tr>
<tr>
<td>ACADEMIC ADVISORS</td>
<td>12</td>
</tr>
<tr>
<td>FEES AND EXPENSES</td>
<td>12</td>
</tr>
<tr>
<td>ACADEMIC PROGRAMS AND DEGREES OFFERED</td>
<td>13</td>
</tr>
<tr>
<td>REGISTRATION</td>
<td>15</td>
</tr>
<tr>
<td>GRADUATION REQUIREMENTS</td>
<td>15</td>
</tr>
<tr>
<td>Diploma</td>
<td>15</td>
</tr>
<tr>
<td>Bachelor Degree</td>
<td>15</td>
</tr>
<tr>
<td>Study Period</td>
<td>16</td>
</tr>
<tr>
<td>Residence Requirements</td>
<td>16</td>
</tr>
<tr>
<td>Studying Abroad</td>
<td>16</td>
</tr>
<tr>
<td>COURSE REQUIREMENTS FOR A BACHELOR DEGREE</td>
<td>16</td>
</tr>
<tr>
<td>UNIVERSITY REQUIREMENTS</td>
<td>16</td>
</tr>
<tr>
<td>COLLEGE REQUIREMENTS</td>
<td>18</td>
</tr>
<tr>
<td>PROGRAM REQUIREMENTS</td>
<td>18</td>
</tr>
<tr>
<td>SEEKING A SECOND BACHELOR DEGREE FROM DU</td>
<td>18</td>
</tr>
<tr>
<td>ACADEMIC RULES AND REGULATIONS</td>
<td>19</td>
</tr>
<tr>
<td>GRADING SYSTEM</td>
<td>19</td>
</tr>
</tbody>
</table>
CREDIT LOAD .. 19
ASSessment AND EXaminATIONS .. 20
Performance assessment .. 20
Course grade policy .. 20
Examinations .. 20
Make-Up Examination ... 20
Appeal of Exam Grade .. 21
Incomplete “I” Work ... 21
Submission of Final Grades .. 22
Request for a Review of Final Course Grade .. 22
Change of Grade .. 22
Dean’s Honor List ... 23
Graduation with Distinction or High Distinction .. 23
Failing Courses ... 23
Repeating Courses .. 23
Substituting Courses ... 24
Dropping and Adding of Courses ... 24
Dropping and Adding Rules ... 24
Changing a Section ... 24
Attendance and Withdrawal .. 25
Class Attendance and Absence Rules .. 25
Withdrawal from Courses ... 25
Withdrawal from the University ... 26
Withdrawal from a Semester ... 26
Academic Standing .. 26
Classification of Students .. 26
Academic Probation .. 26
Removal of Academic Probation ... 27
Academic Dismissal ... 27
Readmission ... 28
Student Records .. 28
Disclosure Policy ... 28
Transfer .. 29
Transfer from Another Recognized College/University ... 29
Course Equivalency Criteria .. 29
Transfer from One Major to Another within the Same College ... 30
Transfer from One College to Another at the University .. 30
Academic Related Programs ... 30
Foundation Program (FP) .. 30
Center for Teaching and Learning (CTL) .. 31
Continuing Education Center (CEC) ... 31
Academic Support Services ... 31
Department of Public Relations and External Cooperation .. 32
Computing and Networking Center .. 32
Library .. 32
<table>
<thead>
<tr>
<th>FOUNDATION PROGRAM</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEALTH SERVICES</td>
<td>33</td>
</tr>
<tr>
<td>QUALITY ASSURANCE BOARD</td>
<td>33</td>
</tr>
<tr>
<td>RISK MANAGEMENT</td>
<td>33</td>
</tr>
<tr>
<td>STUDENT AFFAIRS DEPARTMENT</td>
<td>34</td>
</tr>
<tr>
<td>STUDENT CLUBS</td>
<td>34</td>
</tr>
<tr>
<td>STUDENT GOVERNANCE</td>
<td>34</td>
</tr>
<tr>
<td>IDENTIFICATION CARD (ID)</td>
<td>34</td>
</tr>
<tr>
<td>ORIENTATION</td>
<td>34</td>
</tr>
<tr>
<td>STUDENT EMPLOYMENT PROGRAM</td>
<td>34</td>
</tr>
<tr>
<td>COUNSELING SERVICES</td>
<td>35</td>
</tr>
<tr>
<td>CAREER GUIDANCE SERVICES</td>
<td>35</td>
</tr>
<tr>
<td>STUDENT HOUSING</td>
<td>35</td>
</tr>
<tr>
<td>CAFETERIAS AND COFFEE SHOPS</td>
<td>35</td>
</tr>
<tr>
<td>ATHLETICS AND RECREATION</td>
<td>35</td>
</tr>
<tr>
<td>STUDENT EXCHANGE</td>
<td>35</td>
</tr>
<tr>
<td>STUDENT DISCIPLINARY SYSTEM</td>
<td>36</td>
</tr>
<tr>
<td>SMOKING POLICY</td>
<td>36</td>
</tr>
<tr>
<td>FOUNDATION PROGRAM (FP)</td>
<td>37</td>
</tr>
<tr>
<td>FOUNDATION PROGRAM</td>
<td>38</td>
</tr>
<tr>
<td>OFFICERS OF THE PROGRAM</td>
<td>38</td>
</tr>
<tr>
<td>ORGANIZATIONAL STRUCTURE</td>
<td>38</td>
</tr>
<tr>
<td>Vision</td>
<td>38</td>
</tr>
<tr>
<td>Mission</td>
<td>38</td>
</tr>
<tr>
<td>English Language Unit</td>
<td>38</td>
</tr>
<tr>
<td>Mathematics and Information Technology Unit</td>
<td>39</td>
</tr>
<tr>
<td>PROGRAM OVERVIEW</td>
<td>39</td>
</tr>
<tr>
<td>STUDY PLAN</td>
<td>39</td>
</tr>
<tr>
<td>STRUCTURE OF THE PROGRAM</td>
<td>39</td>
</tr>
<tr>
<td>ENGLISH LANGUAGE UNIT</td>
<td>40</td>
</tr>
<tr>
<td>Learning Outcome Standards for English</td>
<td>40</td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>41</td>
</tr>
<tr>
<td>MATHEMATICS AND INFORMATION TECHNOLOGY UNIT</td>
<td>42</td>
</tr>
<tr>
<td>Mathematics</td>
<td>42</td>
</tr>
<tr>
<td>Learning Outcomes</td>
<td>42</td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>43</td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>43</td>
</tr>
<tr>
<td>Study Skills</td>
<td>44</td>
</tr>
<tr>
<td>PLACEMENT IN THE FOUNDATION PROGRAM</td>
<td>44</td>
</tr>
<tr>
<td>PROMOTION POLICY AND EXIT FROM FP</td>
<td>44</td>
</tr>
<tr>
<td>EXEMPTION FROM THE FOUNDATION ENGLISH PROGRAM</td>
<td>45</td>
</tr>
<tr>
<td>COLLEGE OF ARTS AND APPLIED SCIENCES (CAAS)</td>
<td>46</td>
</tr>
<tr>
<td>OFFICERS OF THE COLLEGE</td>
<td>47</td>
</tr>
<tr>
<td>ORGANIZATIONAL STRUCTURE</td>
<td>47</td>
</tr>
</tbody>
</table>
COLLEGES ACADEMIC CALENDAR 2013-2014

First Semester (Fall) 2013-2014

<table>
<thead>
<tr>
<th>Month</th>
<th>Date</th>
<th>Weeks</th>
<th>Day</th>
<th>Activity/Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>1</td>
<td></td>
<td>Sunday</td>
<td>Faculty members report to work</td>
</tr>
<tr>
<td>September</td>
<td>3-5</td>
<td></td>
<td>Tue-Thu</td>
<td>Registration for continuing students</td>
</tr>
<tr>
<td>September</td>
<td>8</td>
<td>1</td>
<td>Sunday</td>
<td>First day of classes& classes in session</td>
</tr>
<tr>
<td>September</td>
<td>10-12</td>
<td>1</td>
<td>Tue-Thu</td>
<td>Drop and Add +late registration</td>
</tr>
<tr>
<td>October</td>
<td>3</td>
<td>4</td>
<td>Tuesday</td>
<td>Last day for Incomplete work "I"</td>
</tr>
<tr>
<td>October</td>
<td>14-16</td>
<td></td>
<td></td>
<td>Eid Al Adha – Tentative</td>
</tr>
<tr>
<td>November</td>
<td>04</td>
<td>12</td>
<td></td>
<td>Islamic New Year – Tentative</td>
</tr>
<tr>
<td>November</td>
<td>27-28</td>
<td>12</td>
<td>Wed-Thu</td>
<td>National Day – Tentative</td>
</tr>
<tr>
<td>November</td>
<td>28</td>
<td>12</td>
<td>Thursday</td>
<td>Spring schedule announcement</td>
</tr>
<tr>
<td>December</td>
<td>12</td>
<td>14</td>
<td>Thursday</td>
<td>Last day for course withdrawal with "W"</td>
</tr>
<tr>
<td>December</td>
<td>26</td>
<td>17</td>
<td>Thursday</td>
<td>Last day of classes</td>
</tr>
<tr>
<td>December</td>
<td>29-30</td>
<td>18</td>
<td>Su-Mon</td>
<td>Reading period</td>
</tr>
<tr>
<td>Dec-Jan</td>
<td>31-11</td>
<td>18</td>
<td>Tue-Sat</td>
<td>Final Exam</td>
</tr>
</tbody>
</table>

Second Semester (Spring) 2013-2014

<table>
<thead>
<tr>
<th>Month</th>
<th>Date</th>
<th>Weeks</th>
<th>Day</th>
<th>Activity/Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>28-30</td>
<td></td>
<td>Tue-Thu</td>
<td>Registration for continuing students</td>
</tr>
<tr>
<td>February</td>
<td>02</td>
<td>1</td>
<td>Sunday</td>
<td>First day of classes& classes in session</td>
</tr>
<tr>
<td>February</td>
<td>04-06</td>
<td>4</td>
<td>Tuesday</td>
<td>Drop and Add + Late registration</td>
</tr>
<tr>
<td>February</td>
<td>27</td>
<td></td>
<td></td>
<td>Last day for Incomplete Work "I"</td>
</tr>
<tr>
<td>April</td>
<td>20-24</td>
<td></td>
<td>Sun-Thu</td>
<td>Spring Break</td>
</tr>
<tr>
<td>May</td>
<td>1</td>
<td>13</td>
<td>Thursday</td>
<td>Final Exam announcement</td>
</tr>
<tr>
<td>May</td>
<td>8</td>
<td>14</td>
<td>Thursday</td>
<td>Fall 2014-15 schedule announcement</td>
</tr>
<tr>
<td>May</td>
<td>15</td>
<td>15</td>
<td>Thursday</td>
<td>Summer 2013-14 schedule announcement</td>
</tr>
<tr>
<td>May</td>
<td>15</td>
<td>15</td>
<td>Thursday</td>
<td>Last day for withdrawal "W"</td>
</tr>
<tr>
<td>May</td>
<td>22</td>
<td>16</td>
<td>Thursday</td>
<td>Last day of classes</td>
</tr>
<tr>
<td>May</td>
<td>25-26</td>
<td>17</td>
<td>Sun-Mon</td>
<td>Reading period</td>
</tr>
<tr>
<td>May-Jun</td>
<td>27-7</td>
<td>17-18</td>
<td>Tue-Sat</td>
<td>Final examination period</td>
</tr>
</tbody>
</table>

Summer Semester 2013-2014

<table>
<thead>
<tr>
<th>Month</th>
<th>Date</th>
<th>Weeks</th>
<th>Day</th>
<th>Activity/Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>10-12</td>
<td></td>
<td>Tue-Thu</td>
<td>Registration of students</td>
</tr>
<tr>
<td>June</td>
<td>15</td>
<td>1</td>
<td>Sunday</td>
<td>First day of classes</td>
</tr>
<tr>
<td>June</td>
<td>15-16</td>
<td>1</td>
<td>Su-Mon</td>
<td>Drop and Add period & late registration</td>
</tr>
<tr>
<td>July</td>
<td>10</td>
<td>4</td>
<td>Thursday</td>
<td>Last day for withdrawal "W"</td>
</tr>
<tr>
<td>July</td>
<td>24</td>
<td>6</td>
<td>Thursday</td>
<td>Last day of classes</td>
</tr>
<tr>
<td>July</td>
<td>27-28</td>
<td>7</td>
<td>Sun-Mon</td>
<td>Final examination period</td>
</tr>
</tbody>
</table>
FP ACADEMIC CALENDAR 2013-2014

First Semester 2013-2014

<table>
<thead>
<tr>
<th>MONTH</th>
<th>DATE</th>
<th>WEEK</th>
<th>DAY</th>
<th>ACTIVITY/EVENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>1</td>
<td>1</td>
<td>Sunday</td>
<td>Work resumption (Staff)</td>
</tr>
<tr>
<td>September</td>
<td>2</td>
<td>1</td>
<td>Mon</td>
<td>First Placement Tests</td>
</tr>
<tr>
<td>September</td>
<td>3</td>
<td>1</td>
<td>Tuesday</td>
<td>Second Placement Tests</td>
</tr>
<tr>
<td>September</td>
<td>2-4</td>
<td>1</td>
<td>Mon-Wed</td>
<td>Registration (continuing students)</td>
</tr>
<tr>
<td>September</td>
<td>5</td>
<td>1</td>
<td>Thy</td>
<td>Registration (New Students)</td>
</tr>
<tr>
<td>September</td>
<td>8</td>
<td>2</td>
<td>Sun</td>
<td>First day of classes</td>
</tr>
<tr>
<td>October</td>
<td>3</td>
<td>4</td>
<td>Thursday</td>
<td>Last day for Incomplete</td>
</tr>
<tr>
<td>October</td>
<td>15-17</td>
<td>7</td>
<td>Tue-Thu</td>
<td>Eid Al Adha - Tentative</td>
</tr>
<tr>
<td>October</td>
<td>8-9</td>
<td>6</td>
<td>Tue-Wed</td>
<td>Mid-Term Test</td>
</tr>
<tr>
<td>November</td>
<td>4</td>
<td></td>
<td></td>
<td>Islamic New Year - Tentative</td>
</tr>
<tr>
<td>November</td>
<td>27-28</td>
<td>13</td>
<td>Wed-Thu</td>
<td>National day - Tentative</td>
</tr>
<tr>
<td>December</td>
<td>12</td>
<td>15</td>
<td>Thu</td>
<td>Last day of classes</td>
</tr>
<tr>
<td>December</td>
<td>13-14</td>
<td>15</td>
<td>Fri-sat</td>
<td>Reading Days</td>
</tr>
<tr>
<td></td>
<td>15-16</td>
<td>16</td>
<td>Sun-Mon</td>
<td>Final Exam/Exit Exam L3</td>
</tr>
<tr>
<td></td>
<td>17-19</td>
<td>16</td>
<td>Tue-Thu</td>
<td>Finalizing marks and submitting them to Registrar</td>
</tr>
</tbody>
</table>

Second Semester 2013-2014

<table>
<thead>
<tr>
<th>MONTH</th>
<th>DATE</th>
<th>WEEK</th>
<th>DAY</th>
<th>ACTIVITY/EVENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>December</td>
<td>30</td>
<td>1</td>
<td>Mon</td>
<td>First Placement Tests</td>
</tr>
<tr>
<td>December</td>
<td>31</td>
<td>1</td>
<td>Tuesday</td>
<td>Second Placement Tests</td>
</tr>
<tr>
<td>December-January</td>
<td>30-1</td>
<td>1</td>
<td>Mon-Wed</td>
<td>Registration (continuing students)</td>
</tr>
<tr>
<td>January</td>
<td>2</td>
<td>1</td>
<td>Thu</td>
<td>Registration (New Students)</td>
</tr>
<tr>
<td>January</td>
<td>5</td>
<td>2</td>
<td>Sun</td>
<td>First Day of classes</td>
</tr>
<tr>
<td>Feb</td>
<td>5-6</td>
<td>6</td>
<td>Wed-Thu</td>
<td>Mid Term Test</td>
</tr>
<tr>
<td>March</td>
<td>20</td>
<td>12</td>
<td>Thursday</td>
<td>Last Day of classes</td>
</tr>
<tr>
<td>March</td>
<td>21-22</td>
<td>12</td>
<td>Fri-Sat</td>
<td>Reading Days</td>
</tr>
<tr>
<td></td>
<td>23-24</td>
<td>13</td>
<td>Sun-Mon</td>
<td>Final Exam/Exit Exam L3</td>
</tr>
<tr>
<td></td>
<td>25-27</td>
<td>13</td>
<td>Tue-Thu</td>
<td>Finalizing marks and submitting them to Registrar</td>
</tr>
</tbody>
</table>

Third Semester 2013-2014

<table>
<thead>
<tr>
<th>MONTH</th>
<th>DATE</th>
<th>WEEK</th>
<th>DAY</th>
<th>ACTIVITY/EVENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>1</td>
<td>1</td>
<td>Tuesday</td>
<td>Placement Tests</td>
</tr>
<tr>
<td>April</td>
<td>2</td>
<td>1</td>
<td>Wednesday</td>
<td>Registration (continuing students)</td>
</tr>
<tr>
<td>April</td>
<td>3</td>
<td>1</td>
<td>Thursday</td>
<td>Registration (New Students)</td>
</tr>
<tr>
<td>April</td>
<td>6</td>
<td>2</td>
<td>Sunday</td>
<td>First day of classes</td>
</tr>
<tr>
<td>May</td>
<td>14-15</td>
<td>6</td>
<td>Wed-Thu</td>
<td>Mid-Term Test</td>
</tr>
<tr>
<td>June</td>
<td>19</td>
<td>12</td>
<td>Thursday</td>
<td>Last day of classes</td>
</tr>
<tr>
<td>June</td>
<td>20-21</td>
<td>12</td>
<td>Fri-Sat</td>
<td>Reading Days</td>
</tr>
<tr>
<td></td>
<td>22-23</td>
<td>13</td>
<td>Sun-Mon</td>
<td>Final Exam/ Exit Exam L3</td>
</tr>
<tr>
<td></td>
<td>24-26</td>
<td>13</td>
<td>Tue-Thu</td>
<td>Finalizing marks and submitting them to Registrar</td>
</tr>
</tbody>
</table>
BOARD OF TRUSTEES

HE Sheikh Mustaheel Bin Ahmad Al Mashani, Chairman
HE Yusuf Bin Alawi Bin Abdullah, Vice Chairman
HE Abdul Aziz Bin Mohammed Al Rawas,
HE Sheikh Said Bin Ahmad Al Shanfari
HE Sheikh Salem Bin Mustaheel Al Mashani, Chairman of the Executive Committee
HE Abdul Alem Bin Mustaheel Rakhyout
Sheikh Salem Bin Mubarak Al Shanfari
Sheikh Salem Bin Abdullah Said Al Rawas
Professor Amer Bin Ali Al Rawas
Dr. Taher Bin Abdul Rahman BaOmar
Dr. Hassan Kashoob, Vice Chancellor
DHOFAR UNIVERSITY
AN OVERVIEW
UNIVERSITY OFFICERS

Administrative Officers

Dr. Hassan Kashoob, Vice Chancellor
Prof. Mohamed Limam, Deputy Vice Chancellor for Academic Affairs and Research
Dr. Sanjay Ramteke, Director of Quality Assurance Unit
Mr. Abdulkader Ba Omar, Director of the Department of Administrative Affairs
Mr. Mohammed Tabook, Director of the Department of Finance
Ms. Salama Al Mashani, Director of the Department of Admission and Registration
Mr. Hassan Said Kashoob, Director of Student Affairs
Ms. Fatima Qatan, Director of VC Office
Eng. Mohammad Dimachkie, Director of the Computing and Networking Center
Mr. Musallem Kashoob, Acting Director of the Department of Human Resources
Eng. Baskaran Ramados, Acting Director of the Department of Technical Affairs
Mr. Mohammad Qatan, Acting Director of the Community Services Center
Mr. Abdullah Hussein Al Hafeedh, Acting Director for Purchase Department
Mr. Abdulrahman Ba Omar, Acting Director of Public Relations and External Cooperation

Academic Officers

Dr. Hassan Kashoob, Vice Chancellor
Prof. Mohamed Limam, Deputy Vice Chancellor for Academic Affairs and Research
Prof. Fouad Chedid, Dean of the College of Arts and Applied Sciences
Dr. Syed Ahsan Jamil, Dean of the College of Commerce and Business Administration
Dr. Heba Hassan, Acting Dean of the College of Engineering
Dr. Fraser Gray, Acting Director of the Foundation program, (FP)
Dr. Lakshmi Narayanan, Assistant Dean of the College of Arts and Applied Sciences
Dr. Ramez Al Bainy, Chairperson of the Department of Languages and Translation
Dr. Ahmed Al Maashani, Chairperson of the Department of Education
Dr. Biju Sayed, Acting Chairperson of the Department of Computer Science
Dr. Ibrahim Najjar, Chairperson of the Department of Social Sciences
Dr. Edris Rawashdeh, Chairperson of the Mathematics and Sciences Unit
Mr. Muawya Ahmed Hussein, Chairperson of the Department of Accounting and Finance
Dr. Khaliquzzaman Khan, Chairperson of the Department of Management, Marketing and Information Systems
Dr. Aref Wazwaz, Chairperson of the Department of Chemical Engineering
Dr. Ahmad Abu Abdo, Chairperson of the Department of Civil and Environmental Engineering
Prof. Rustom Mamlook, Chairperson of the Department of Electrical and Computer Engineering
Dr. Said Grami, Acting Chairperson of the Department of Mechanical and Mechatronics Engineering
Mr. Hugo Bello, Acting Chairperson of the Department of Graphic Design and Interior Architecture
Dr. Tareq Mohammed Al Housary, Assistant Dean, (CCBA)
Prof. Asim Hussein Al Araji, Convener of the Master Program, (CCBA)
Mr. FaiCal Al Hamadi, Deputy Director (FP)
Mr. Ahmed al Hamadi, Coordinator of the English Level 3, (FP)
Mrs. Rehana Sharma, Coordinator of the English Level 2, (FP)
Mr. Hyder al Mughrabi, Coordinator of the English Level 1, (FP)
Mr. Syed Salman Mahmood, Math Coordinator, (FP)
Mr. Muhammed Yousoof, IT Coordinator, (FP)

Academic Support Services

Prof. Mohamed Limam, Deputy Vice Chancellor for Academic Affairs and Research
Mr. Mohammad Dimachkieh, Director of the Computing and Networking Center
Dr. Israr Ul Hassan, Director of the Department of Research
Mr. Ali Al Awaid, Director of the Library
Mr. Abdulrahman Ba Omar, Acting Director of Public Relations and External Cooperation

University Council

Dr. Hassan Kashoob, Vice Chancellor
Prof. Mohamed Limam, Deputy Vice Chancellor for Academic Affairs and Research
Prof. Fouad Chedid, Dean of the College of Arts and Applied Sciences
Dr. Syed Ahsan Jamil, Dean of the College of Commerce and Business
Dr. Heba Hassan, Acting Dean of the College of Engineering
Dr. Fraser Gray, Acting Director of the Foundation program, (FP)
Prof. Rustom Mamlook, Chairperson of the Department of Electrical and Computer
Dr. Anthony Ridgway, Assistant Professor in College of Arts and Applied Sciences
Dr. Shanker Menon, Faculty Representative of the College of Commerce and Business Administration
Colleges, Units, and Boards

College of Arts and Applied Sciences
Prof. Fouad Chedid, Dean

College of Commerce and Business Administration
Dr. Syed Jamil, Dean

College of Engineering
Dr. Heba Hassan, Acting Dean

Foundation Program
Dr. Fraser Gray, Acting Director

Quality Assurance Unit
Dr. Sanjay Deodutta Ramteke - Director

Risk Management Committee
Dr. Syed Jamil - Chairperson

Center for Teaching and Learning
Director of the center
THE UNIVERSITY
THE UNIVERSITY

Background
Dhofar University (DU) is a private institution of higher education in Salalah, Sultanate of Oman, established by Ministerial Decree No. 5/2004 issued in January 2004. The University formally commenced its operations in September 2004. Dhofar University has a Board of Trustees that represents its highest policy making body, and was established with academic and technical support from the American University of Beirut (AUB).

Vision
Dhofar University aspires to occupy a recognized position among the institutions of quality higher education.

Mission
Dhofar University strives to achieve excellence in teaching, research, and community service, in an open learning environment conducive to creativity and innovation and to the acquisition of cutting-edge professional knowledge.

Objectives
- To ensure academic excellence in all fields of study offered at the University
- To enable students to explore their capabilities and take full advantage of the educational opportunities offered at Dhofar University in order to develop to their full intellectual potential.
- To produce morally responsible individuals who are highly competent in their fields of specialization and well prepared to succeed in life.
- To produce life-long self-learners committed to serve their society.

Values
The core values of Dhofar University are:
- Academic excellence
- Individual responsibility
- Life-long learning
- Quality
- Continuous improvement
Admission of University Employees

All degrees and diplomas awarded by Dhofar University are registered with the Ministry of Higher Education (MOHE) in the Sultanate of Oman. The University is a member of the Oman Quality Network (OQN), which is an independent, not-for-profit network of Omani Higher Education Providers focused on quality enhancement in higher education.

Dhofar University is one of the few Higher Educational Institutions (HEIs) in Sultanate of Oman that has established an independent Quality Assurance Unit (QAU) headed by full time QA Director to monitor the quality of teaching and services, and to ensure compliance with the requirements of the Ministry of Higher Education and the Oman Authority for Academic Accreditation (OAAA).

Campus Facilities

The brand new campus was designed to conform to local needs and cultural context while meeting both international design standards and those of the Ministry of Higher Education. The campus includes: an administration building, three buildings for the three colleges and the Foundation Program, a common classroom building, a main library building, a student activities center, theatre, a mosque, female student dormitories, and housing for the senior administration. Students, faculty and staff have access to the city sports complex located next to the new campus.

Location and Climate

DU is located in Salalah, the main city of the Dhofar governorate. Salalah is well-known for its beautiful and mild weather throughout the year but particularly in the summer (known as Khareef season). The temperature remains steady in the upper twenties, but occasionally rises to mid-thirties. The long and clean sandy shores of Salalah, one of the most beautiful in the world, are ideal for fishing and swimming. The nearby mountains are ideal for hiking.

Admission Policies and Procedures

Admission Requirements

Students are admitted to the undergraduate programs at Dhofar University on the basis of their:

1. General Education Certificate or its equivalent; and
2. Results in the English, Math, and Information Technology placement tests.
Based on the results of placement tests, accepted students are divided into two groups as follows:

A. Students who need remedial work; these will join the Foundation Program, for one or more semesters, until they successfully complete the Program; and

B. Students who proceed directly to the first year of the diploma or bachelor program.

Students may be exempted from English, Math, or IT Foundation requirements and admitted directly to their chosen fields of specialization if they meet the following criteria:

- Exemption from English requires minimum scores of: 5.0 in International English Language Testing System (IELTS) writing minimum 4.5; or Scholastic Assessment Test (SAT I) score of 500 on the verbal section;
- Exemption from Math requires a minimum score of 500 on the SAT I math section or equivalent; and
- Exemption from IT requires an English ICDL certificate or equivalent.

Colleges may have additional requirements to join specific programs, details of which can be found under College Requirements in the DU catalogue.

Applicants who have minimum English score of 7.0 IELTS or 380 SAT I (writing section) will be exempted from Freshman English requirements: ENGL 101A/B and ENGL 102.

Please note that the validity of all these tests is limited to two years from the date of taking the exam. Applicants must submit original certificate of test results and the University reserves the right to verify the authenticity of the certificate. Holders of IELTS and TOEFL certificates issued by institutions outside Oman may be asked to sit for the placement test.

Application Procedure

Every applicant is required to submit the following documents:

- A completed application form
- A certified copy of the General Education Certificate or its equivalent
- Four recent photographs
- A photocopy of identity card or passport
- A non-refundable application fee of RO 30 for diploma / bachelor program and RO 50 for master Program.

Please note that any certificate originated from a foreign country must be authenticated by the Omani Ministry of Education before it is accepted.

Special and Audit Students

Dhofar University is part of the network of universities serving Oman and the region and is very keen on maintaining good relations with other institutions of
higher learning. Furthermore, the University is located in Salalah which is world renowned for its mild climate in summer, or the rainy “Khareef” season when thousands of visitors come to enjoy the weather and the beautiful environment. Many students come with their families to Salalah and would like to continue their education while enjoying the Khareef. The University accepts Special students who would like to take a certain number of courses and transfer their credits to their universities. The University allows them to register for courses or merely attend classes as auditors. Special students and auditors are required to present documents that show their credentials and preparedness to take courses in the University.

A student who has been dismissed from the University (See Dismissal section) may register as a special student not working for a degree contingent to the approval of the Administrative Committee of the corresponding College.

Academic Advisors

Each student is assigned an academic advisor from day one at DU. The academic advisor is a faculty member in the academic division in which the student is enrolled. The role of the advisor is to assist the advisee in preparing course schedule during registration, support and guide him/her during his/her university studies, monitors his/her academic progress, and offers him/her counseling on any academic difficulties or problems he/she may experience.

Fees and Expenses

Tuition Fees

Tuition fees are as follows:

- 900 Omani Riyals for each of three Terms semesters for the Foundation Program.
- 70 Omani Riyals for each credit hour taken in the fall, spring and summer semesters for all day programs.
- Year One students who take FP Math or IT, pay the equivalent of 3 credits for each.
- 125 to 150 Omani Riyals, depending on the program, for each credit hour taken in the fall, spring and summer semesters for Masters Programs.

The above fees do not include books, transportation, or housing expenses.

Tuition Refund

A student may withdraw from a semester after registration, but the refund rate of tuition depends on the timing of the withdrawal:
Full tuition will be refunded only to students who withdraw from the semester before the end of the first week of classes.

50% of tuition fees will be refunded to students who withdraw before the end of the second week of classes.

NO REFUND will be made to students who withdraw from the semester from the beginning of the third week of classes and onward.

Academic Programs and Degrees Offered

DU offers two-year diplomas, four-year bachelor degrees, and master degrees in: 1) Management; 2) Education in Educational Administration; 3) Education in Counseling; and 4) Curriculum and Instruction: Teaching English Language. Academic programs follow the American model of higher education and use English as the medium of instruction except for the Master in Management and the Master in Educational Administration programs are in Arabic. The academic year is divided into two semesters of sixteen weeks of instruction each and a summer session of six weeks of instruction.

A student will be awarded either a diploma or a bachelor degree, but not both, in accordance with the choice he/she had made when he/she joined DU. If a bachelor bound student decided, for a legitimate reason, to forgo his/her desire to finish the bachelor program in the middle of a semester and decided to receive a diploma instead then he/she will be required to drop all courses in progress. A diploma will then be awarded contingent to completing the requirements of the diploma program, subject to the approval of the College Administrative Committee and the DVC for Academic Affairs.

The University has three colleges: the College of Arts and Applied Sciences, the College of Commerce and Business Administration, and the College of Engineering. The programs offered in each college are summarized in the tables below.
College of Arts and Applied Sciences (CAAS)

CAAS offers the following degrees:
- Diploma in Computer Science
- Diploma in Chemistry
- Diploma in English Language
- Diploma in Mathematics
- Diploma in Social Work
- Bachelor of Arts in Arabic Language
- Bachelor of Arts in Social Work
- Bachelor of Arts in English Language
- Bachelor of Arts in Translation
- Bachelor of Education in English Language, Mathematics, Science, or Information Technology
- Bachelor of Law
- Bachelor of Science in Computer Science
- Bachelor of Science in Mathematics
- Master in Curriculum and Instruction: Teaching English Language
- Master of Education in Educational Administration (in Arabic)
- Master of Education in Counseling (in Arabic)
- Master of Science in Information Technology
- Minor in Arabic Language
- Minor Arabic Literature

College of Commerce and Business Administration (CCBA)

CCBA offers Diploma and Bachelor of Arts in Business Administration in the following Major areas:
- Diploma in Accounting
- Diploma in Finance
- Diploma in Insurance
- Diploma in Management
- Diploma in Marketing
- Diploma in Management Information Systems
- Bachelor of Accounting
- Bachelor of Finance
- Bachelor of Insurance
- Bachelor of Management
- Bachelor of Marketing
- Bachelor of Management Information Systems
CCBA also offers a Master’s degree in Management in Arabic. For details on the Master program refer to the Graduate Studies section in this catalog.

College of Engineering (CE)

The College of Engineering offers the following degrees:

- Diploma in Civil Engineering (CVE)
- Diploma in Chemical Engineering (CHE)
- Diploma in Electrical and Computer Engineering (ECE)
- Diploma in Mechanical Engineering (ME)
- Diploma in Mechatronics Engineering (MTE)
- Diploma in Interior Architecture Engineering (IAE)
- Diploma in Graphic Design (GD)

- Bachelor of Science in Chemical Engineering (CHE)
- Bachelor of Science in Civil Engineering (CVE)
- Bachelor of Science in Computer and Communications Engineering (CCE)
- Bachelor of Science in Electrical and Electronics Engineering (EEE)
- Bachelor of Science in Mechanical Engineering (ME)
- Bachelor of Science in Mechatronics Engineering (MTE)
- Bachelor of Interior Architecture Engineering (IAE)
- Bachelor of Graphic Design in Graphic Design (GD)

The College of Engineering also offers two minors: Information Technology and Petroleum Engineering.

Registration

Periods of registration are announced in the academic calendar which is published in the University catalogue and on DU’s web site.

Graduation Requirements

Diploma

To receive a Diploma degree, students must satisfactorily complete at least 60 credit hours specified by the College with a cumulative average of 65 percent. Other graduation requirements for a particular diploma program are stated in the corresponding program section of this catalogue.

Bachelor Degree

To receive a Bachelor degree, a student must satisfactorily complete the number of credit hours required by the College he/she is enrolled in with:

- A cumulative average of 65 percent,
• A major cumulative average of 70 percent in the compulsory major courses,

Study Period

The study period a student must spend in a diploma program ranges from a minimum period of two years or four semesters, up to a maximum period of four years or eight semesters.

The minimum study period for a student in a Bachelor program is eight semesters beginning with the freshman class. The maximum study period depends on the class he/she enrolled in at the beginning of his/her studies: eight calendar years if student begins with the freshman class (1st year), six calendar years if student begins with the sophomore class (2nd year), and four calendar years if student begins with the junior class (3rd year).

A student who fails to complete his/her degree program within these specified times must petition the College Administrative Committee for an extension of time.

Residence Requirements

Students transferring to DU must earn at least 60 credits (30 credits) required for graduation while in residence at DU for a bachelor degree (diploma). A DU student must spend his/her final year at DU.

A student who transfers from another college within DU must spend a minimum of three semesters (two semesters) in the new College during which he/she completes a minimum of 36 credits (30 credits), out of which 12 are credits in the major, before he/she receives a bachelor degree (diploma). For the purpose of this requirement, two summer sessions shall be considered equivalent to one semester.

Studying Abroad

A DU student in good academic standing who did not transfer to DU from another institution and wishes to study abroad must seek the approval of the College Academic Committee or the Dean to spend up to one year and earn up to 30 credits at another university; however, the student must spend his/her final year of study at DU.

Course Requirements for a Bachelor Degree

University requirements

These include general educational requirements (English language, Arabic language, Omani society, mathematics, world civilizations, and computer literacy). University requirements for a Bachelor’s degree comprise 30 credit
hours and less than 30 credit hours for a diploma degree (refer to the diploma program of interest for details). University requirements are distributed as follows:

1. **Arabic:** The following three-credit hours course
 - ARAB 101 - Academic Writing in Arabic

2. **Social and Cultural Studies:** This component includes the following two courses encompassing nine credit hours:
 - SOCS 102 - Omani Society
 - SOCS 200 - World Civilizations

3. **English Communication Skills:** This component consists of the following four courses encompassing twelve credit hours:
 - ENGL 101A - Basic Academic English I
 - ENGL 102 - Basic Academic English II
 - ENGL 203 - Advanced Academic English I
 - ENGL 204 - Advanced Academic English II for majors in English language and translation, education, social works, chemistry, computer science, mathematics, physics, and business administration specializations, and graphic design; or
 - ENGL 280 - Business English for majors in computer and communications engineering, electrical and electronic engineering, and mechanical engineering

 Students who are exempted from taking ENGL 101A or 101B on the basis of their results in a special placement test should take three credits in English or Humanities in order to complete their total 120 credits required to receive a Bachelor degree.

4. **Computer literacy:** This requirement consists of one, three-credit hours course which is either CMPS 100A (Introduction to Technical Computing for the Arts) or CMPS 100B (Introduction to Technical Computing for the Sciences).

5. **Mathematics:** This requirement consists of a three-credit hours course selected from the following list:
 - MATH 199 - Calculus I: For computer science, chemistry, physics, mathematics, Education specializations except English language, and engineering majors except graphic design and interior architecture.
 - MATH 103 – Mathematics for Social Sciences I: For arts and business majors such as English Language, Social Work, Education: English
language, graphic design and interior architecture, and Business Administration concentrations.

College requirements

This component comprises courses that are offered by various departments within the College. For a list of the specific courses in this group, please refer to the college and particular program section of interest in this catalog.

Program requirements

This component consists of a set of core and elective courses that are offered by a particular program. For a list of the specific courses in this group, please refer to the particular program section of interest in this catalog.

General Electives

This set of required electives includes a wide range of courses from various majors across the university, as mandated by each program separately.

Seeking a second Bachelor Degree from DU

A student already who holds a bachelor degree and wishes to obtain a second bachelor degree in a different major of study must complete, after admission to the new college, all major credit hours as well as fulfill any other non-major graduation requirements for the new degree.
Academic Rules and Regulations

Grading System

The undergraduate grading system adopted at Dhofar University and its equivalence to the Letter Grade system and the Grade Points Average (GPA) system are shown below:

<table>
<thead>
<tr>
<th>Numerical Grade</th>
<th>Grade Type</th>
<th>Equivalent Letter Grade</th>
<th>Equivalent Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>Outstanding</td>
<td>A</td>
<td>4.0</td>
</tr>
<tr>
<td>85-89</td>
<td>Excellent</td>
<td>B+</td>
<td>3.5</td>
</tr>
<tr>
<td>80-84</td>
<td>Very Good</td>
<td>B</td>
<td>3.0</td>
</tr>
<tr>
<td>75-79</td>
<td>Good</td>
<td>C+</td>
<td>2.5</td>
</tr>
<tr>
<td>70-74</td>
<td>Fair</td>
<td>C</td>
<td>2.0</td>
</tr>
<tr>
<td>60-69</td>
<td>Weak</td>
<td>D</td>
<td>1.0</td>
</tr>
<tr>
<td>Below 60</td>
<td>Fail</td>
<td>F</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Incomplete</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pass</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In progress</td>
<td>PR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Withdrew</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Withdrawn for Excessive Absence</td>
<td>WA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No Grade Reported</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Credit Load

- A full-time student should register for no less than 12 credits and no more than 16 (18 for engineering students) credits in any regular (fall and spring) semester.
- A student may register for up to 18 (19 for engineering students) credits after securing the approval of the Administrative Committee in the College, or if it is required by a Department in specific terms. Approval is normally granted by the Administrative Committee if the student has a cumulative average of at least 80.
- A student may register in a summer term for a maximum of 6 credit hours. All exceptional cases require the approval of the respective Administrative Committee.
- Courses/credits taken during a summer semester are counted towards the semester average of the next semester. If the number of credits taken in any one semester is less than 12 (for approved reasons), courses/credits taken during that semester are counted towards the semester average of the next semester.
- Credit for incomplete courses will be included in the semester in which the incomplete courses were taken. The evaluation for that semester will be
carried out as soon as the grades for the incomplete courses have been finalized.

Assessment and Examinations

Performance Assessment

A student’s academic performance is assessed throughout the semester using various instruments: homework, exams, research papers, projects, practical work, research, etc. The student has the right to receive continuous feedback about his/her performance. The instructor must complete a midterm performance assessment to give students chance to withdraw from the course before the end of the withdrawal period and to help faculty advisors better advise students during the pre-registration period (if implemented).

Course Grade Policy

Course components and associated assessment criteria must be clearly stated in course syllabus. Course grade distribution is expected to conform to the following recommendations:

- At least 60 percent of the total course grade should be allocated to examinations, with a minimum weight of 30 percent assigned to the final exam with emphasis on practical work and projects for the remaining percentage. Any grading scenario that does not meet this policy should be cleared with the Dean early in the semester.
- A certain portion of the final grade will be assigned for attendance and class participation among other possible course requirements (e.g., term paper, project, homework, etc.)

Examinations

All courses normally have final examinations that students must take. The instructor will announce at the beginning of the semester the policy that he/she intends to follow as indicated in the course syllabus in the matter of missed examinations and quizzes, so that the students are fully aware of this policy and its consequences.

Make-Up Examination

A student who misses an examination or a quiz shall receive a grade of zero for the exam or quiz he/she misses. If the student presents a legitimate excuse, the course instructor may then require the student to take a make-up exam or shift its weight to the final exam. Only documented and verifiable medical reports issued by qualified professionals will be accepted.
A student who was absent from the final exam shall receive a grade of zero for the missed exam. If the student petitions the Administrative Committee with a valid excuse for his/her absence and the petition is approved a grade of incomplete 'I' would be posted on the student’s record. The student must take a make-up exam within one month from the start of the following semester to remove the “I” grade. For more details refer to the ‘Incomplete “I” Work’ section in this catalog.

Appeal of Exam grade

The course instructor is the authority that decides on the student’s grade. However, if a student has strong evidence that a mistake has been committed he/she has the right to request the course instructor for a review. If the student is not satisfied with the instructor’s decision, he/she has the right to submit a petition of grievance to the department chairperson within the first two weeks from the beginning of classes in the following semester at the latest. The Chairperson will give a final ruling on the issue after consulting with the faculty members of the department.

Incomplete “I” Work

“İ” is an incomplete grade. Normally, no incomplete grade of “İ” is given as a final grade in any course. In exceptional cases, and provided the guidelines stated below are met, a student may be allowed to make up incomplete work. The guidelines are:

- Incomplete course work will be reported as an “İ” followed by a numerical grade reflecting the evaluation of the student’s work available at the end of the semester; example “İ 55”. This evaluation is to be based on a grade of zero on all missed work.
- For securing permission to complete the work for a course, a student must submit a valid excuse to the instructor of the course and to the College Administrative Committee within two weeks from the date of the scheduled final exam for the course. For that purpose, Form “İ” must be completed in advance for approval of the instructor, the head of the department and the College Administrative Committee. Students should be aware that approval is not automatically granted. Forms for “Incomplete” are available on the University’s website and the Admission and Registration Department.
- Students permitted to complete work for a course must do so within four weeks of the start of the next semester. In exceptional circumstances, the College Administrative Committee may decide to give the student additional time to complete a course.
- After the incomplete work is done and evaluated, the course instructor should complete a change of grade form and submit it to the College Administrative Committee for approval, as stated above.
• If no valid excuse is presented and the work, if permitted, is not completed within the time limits specified above, the “I” will be dropped and the numeric grade available will become the final grade in the course.
• For the purpose of averaging, the numeric grade will be used, until changed through the procedure described above.

Submission of Final Grades

All final grades must be submitted by the Dean’s Office to the Admission and Registration Department by the predefined deadline using the “Grade List”. The grades through grade rosters must be signed by the course instructor, the department chairperson, and Dean of the college.

Request for a Review of Final Course Grade

Any student, who feels that the grading was unfair, must promptly discuss the matter with the instructor of the course. If the student and the instructor are unable to arrive at a solution, the student must submit a “Review of Course Grade Petition Form” to the Chairperson of the concerned department within the first four weeks from the beginning of classes of the following Fall or Spring semesters. The department chairperson investigates the student’s arguments and may request the Academic Committee to review the instructor’s evaluation of the student based on the student’s class work and final examination scores.

Change of Grade

Normally, grades cannot be changed after the submission of the final grades to the Admission and Registration Department (ARD). Under appropriate circumstances, the course instructor submits an approved “Change of Grade Form” to the OAR stating the reasons for the change and endorsed by the department chairperson and the Dean of the college. The Admission and Registration Department should receive the approved form within a month from the beginning of the semester that follows the semester in which the course was taken.

Plagiarism is defined as the unauthorized use of the work of another person, as one’s own, whether or not such work has been published.

A student at Dhofar University shall not engage in plagiarism nor employ nor seek to employ any other unfair means for an examination or in other form of work submitted for assessment as part of any university course. The instructor, at the beginning of the semester, shall explain to students the meaning of the term “plagiarism” and the consequences of committing such an act. Furthermore, the course syllabus shall state explicitly that any form of plagiarism may mean failure for the entire course.

Any person accused of plagiarism shall be referred to the College Administrative Committee in the course of which the violation occurred for appropriate action.
Dean’s Honor List

To be placed on the Dean’s Honor List at the end of a given fall or spring semester, a student must:

- Be carrying at least 12 credits
- Has not been placed on probation in the previous semesters
- Have passed all the courses of the semester and attained a semester average of 85 or more
- Have not been subjected to any disciplinary action within the University during the semester, and
- Be deemed worthy by the Dean to be on the Honor List

Graduation with Distinction or High Distinction

Students who complete their programs of study with a cumulative average of 85% or above in all courses, including repeated courses, and who receive a recommendation from the College are awarded their degrees with distinction. Students who complete their programs of study with a cumulative average of 90% or above in all courses, including repeated courses, and who receive a recommendation from the College are awarded their bachelor degrees with high distinction.

Failing Courses

If a student fails a course, no re-examination is permitted. A student who fails a required course must repeat the course at the earliest opportunity. A student who fails an elective course may not have to repeat it as long as he/she can achieve the minimum cumulative average and the minimum number of credits required for graduation. A student must pass all core courses to be eligible for graduation.

Repeating Courses

- A student may repeat any course for which he/she received a grade of less than 70.
- A student who fails a course four times will be dropped from the program/major. However, if the failed course is a University requirement, the student will be dismissed from the University.
- When a course is repeated, the highest grade will be considered in the calculation of the cumulative average for graduation purposes. All course grades will remain a part of the student’s permanent record.
- A student who, at the end of his/her senior year, fails to attain the cumulative average of 70 in their major will be required to take additional
major courses in the field or to repeat courses in which the student has scored low grades.

- A student may not repeat a course in which he/she has originally obtained a grade of 70 or above unless his/her major track requires a grade higher than the original score.

Substituting Courses

There are situations when a student may be allowed to substitute a course for another in the program of study provided that the substituted course is of the same level or higher than the one being substituted for and is not a core course. Approval of the college Administrative Committee is required.

Dropping and Adding of Courses

Dropping and Adding Rules

Dhofar University follows the credit system where students register for a certain number of credits per semester. A student is given the opportunity to choose his/her courses with the academic advisor during the registration period. However, after selecting a schedule, a student has the opportunity to make changes during the Drop and Add period by submitting an approved “Drop and Add Form” to the Office Admission and Registration. A student should take care not to change all the courses he/she has previously chosen, but only one or two courses, if change is a must.

Changing a Section

A student may change a section provided that the change will not create a time conflict with his/her current schedule. The student must submit an approved “Change of Section Form” to the Office Admission and Registration during the drop/add period.

Drop/Add Period

The drop/add period is usually the first week of the semester. Only the courses that remain in the schedule by the last day of the drop/add period will appear on the student’s permanent academic record and transcripts. No changes in the schedule is allowed after the drop/add period without the permission of the academic advisor and the approval of the Administrative Committee of the college.
Tuition Adjustments for Drop and Add

When a student withdraws from courses within refundable period and his/her load drops below 12 credits, refund is pro-rated in accordance with the above mentioned rules.

Attendance and Withdrawal

Class Attendance and Absence Rules

Attendance of all classes and course-related activities is obligatory. A student is not allowed to miss more than 25% of the course sessions

So that absenteeism warnings and procedures will be as follows:

The first warning 5%: When the student absences reach 5%, an initial warning will be sent by the system (SAD) to student’s Emile, as the student will be informed orally by the teacher or academic advisor.

The second 15%: When the student absences reach 15%, an initial warning will be sent by the system (SAD) to student’s Emile, as the student will be informed orally by the teacher or academic advisor. The student will also be obliged to sign a pledge not to his absence in the future and will be responsible for it if his absence exceeds 20%.

The third 25%: The third warning 25% = warning will lead to the final expulsion from the university (sent to the student via e-mail and inform the student orally so by a teacher or academic supervisor)

Withdrawal from Courses

A student may withdraw from courses after the Drop/Add period until the 14th week of a regular semester or the sixth week of the summer session subject to the following conditions:

- Students who are withdrawn for excessive absences will receive a grade of “WA.”
- Student who withdraws from a course will receive a grade of “W” for the withdrawn course.
- A student cannot withdraw or be withdrawn from a course after the announced deadline unless approved by the College Administrative Committee.
- Students cannot withdraw or be forced to withdraw from a course if this results in the student being registered for less than 12 credits without the approval of the College Administrative Committee.
- A student can withdraw from only one required course per semester. Students who wish to withdraw from more than one required course must petition the College Administrative Committee for permission to do so.
Withdrawal from the University

A student may apply to withdraw from the University at any time, but he/she should fill a form for this purpose that he/she could secure from the Admission and Registration Department or download from the University’s website. The student should note the University’s refund policy mentioned elsewhere in this catalogue.

Withdrawal from a Semester

A student may apply to withdraw from a semester, but the period of absence from the University cannot exceed four semesters consecutively or in total. Application for dropping the semester after the deadline announced in the University Calendar for withdrawal from courses without a grade "F" requires the approval of the Dean of the College. The student must fill an application form for this purpose, which can be secured from the University’s website or the Admission and Registration Department. When a student returns to the University after withdrawing one or a semester, he/she should fill a Resumption of Studies form for this purpose. The absence from the University cannot exceed the total of six semesters, after which a student must reapply to be admitted to the University as a new student and he/she would lose his grade record, unless decided otherwise by the College Administrative Committee.

Academic Standing

Classification of Students

An undergraduate student shall be considered to have completed a class when he/she has taken and passed 30 or more credits beyond the requirements of the previous class. The credit requirements are as follows:

- For completion of the freshman class: at least 30 credits
- For completion of the sophomore class: at least 60 credits
- For completion of the junior class: at least 90 credits
- For completion of the senior class: at least 120 credits

Academic Probation

- A diploma or a bachelor student is placed on Academic Probation if:
 - His/her semester average is less than 63 at the end of the second semester.
 - His/her semester average is less than 64 at the end of the third semester.
• His/her semester average is less than 65 at the end of the forth semester or any subsequent semester, excluding the summer semester.
• If a student fails to clear first probation in the following two semesters successively, he/she is given strict probation.
• Strict probation is the final stage of academic probation and must be cleared in the following semester of its attainment.
• A student can be placed on probation for a maximum of three times with the understanding that a third probation is a strict probation, which means that the student now has to clear his third probation or else he/she will be dismissed from the College.

➢ Strict probation is the final stage of academic probation and must be cleared in the following semester of its attainment.
➢ The total number of probations a student can get the dismissal from the college, including strict probation, is four. This is contingent to the student’s ability to clear any regular (not strict) probation within the following two semesters of attaining it.

For evaluation purposes, the minimum number of credits at the end of the second semester should be 24, and 12 in each subsequent fall or spring semester.

A student may be placed on probation regardless of the number of credits he/she carries. Also students with a load less than 12 credits may clear probation.

Removal of Academic Probation

The probation condition of student is removed when he/she attains a semester average of 64 or more in the third semester or a semester average of 65 or more in the fourth semester or any subsequent semester.

Probation should be removed within two semesters, excluding summer, after placing a student on probation, or when the student completes his/her graduation requirements; otherwise the student shall be on strict probation for one final semester.

Academic Dismissal

A student is dismissed from the College for any of the following reasons:

• If he/she fails to clear his/her strict academic probation in the following semester, excluding the summer term.
• If he/she is placed on academic probation for a total of four times. A student can be dropped for this reason even if he/she is in the final year at DU.
If a student fails a required course four times.
If he/she is deemed unworthy by the college to continue for professional or ethical reasons.

A student who has been dismissed from the College (See Dismissal section) may register as a special student not working for a degree contingent to the College’s approval.

Readmission

A student will normally be considered for readmission to the University and the same college only if, after spending a year at another recognized institution of higher education during which the student took at least 24 credit hours, the student is able to present a satisfactory record and recommendation. Exceptions may be made for students who leave the University for personal or health reasons.

Transfer credits will be considered after evaluation of a student’s course work. The student must achieve a grade equivalent to the grade of 70 at DU in each of the courses for which transfer credits may be granted.

After dismissed from a DU College, a student may immediately apply for readmission to a different DU College. Readmission requires the approval of the Administrative Committee of the new College to which the student applies.

Student Records

Transcript Request

Transcripts will not be issued unless all obligations to the university are cleared. To request a transcript, the student needs to fill, sign, and return a “Transcript Request” Form to the Admission and Registration Department.

Disclosure Policy

The University may disclose general information without prior written consent from the student and this information may include only: student’s name, degrees granted, major and minor fields of study, awards received and participation in official activities and sports. However, the University shall not release other information from academic records, unless it receives the written consent of the student, and this written consent must specify the information that is to be disclosed, the purpose of the disclosure, and the names and addresses of the individuals or institutions to whom disclosure is to be made. The University may disclose information, including information on academic records, without prior consent of the student in the following cases:
• Upon the request of officers of other educational institutions where the student seeks to enroll (in such cases the student will be given, upon his/her request, a copy of the information sent to the institution.);
• As necessary to academic officers, academic advisors, and faculty members within the University;
• To parents of dependent children;
• In compliance with a judicial order; and
• To financial aid services in connection with financial aid for which the student has applied or which the student has received.

Transfer

Transfer from Another Recognized College/University

A student may be accepted at DU as transfer student from another college/university if he/she:

1. Is transferring from a university recognized by the Ministry of Higher Education accredited university,
2. Was not dismissed from that university for disciplinary reasons,
3. Meets DU’s admission requirements, and
4. Satisfies the residency requirements.

If, at a later time, it is discovered that the transfer student had been dismissed from his/her former university for disciplinary reasons, his/her acceptance will be revoked retroactively.

The Admission Committee of the chosen College studies the applications of transferring students and forwards its recommendations to the Dean who in turn sends his decision to the University’s Director of Admission and Registration.

Course Equivalency Criteria

A course taken for credit by a transfer student at another institution prior to joining DU may be transferred to DU credit subject to the following conditions:

a. The course is deemed equivalent to a course offered at DU, that is, it covers 70% of the topics, involves the same components (Lecture, Lab, Tutorial), and has the same number of credits or more
b. The number of transferrable core courses must not exceed 9 credits unless a prior agreement has been signed with the institution from which the student is transferring
c. The student had attained a grade of C, Good or 70 or above on the DU grading scale in the transfer course.
d. Transferred credits will appear on the student’s record but will not be included in the calculation of his/her cumulative GPA.

Transfer from One Major to another within the Same College

A student may transfer from one major to another within the same College only after spending an entire semester in his/her current major and meeting the admission requirements of the new major. A transfer application signed by the student and approved by the head of the department from which the student is transferring should be completed and sent to the department to which the student is transferring at least one month before the beginning of the new semester. The department then studies the applications of the students transferring to that department and forwards its recommendations to the Dean. The Dean communicates his/her decision to the Director of Admission and Registration.

Transfer from One College to another at the University

A student may transfer from one College to another only after spending an entire semester in his/her current college and meeting the admission requirements of the new College. A transfer application signed by the student and approved by the Dean of the departed College should be filled in and sent to the Admission and Registration Department then to the Admissions Committee of the new College at least one month before the beginning of the new semester. The Admission Committee of the College studies the applications of the students transferring to that College and forwards its recommendations to the Dean.

Academic Related Programs

In addition to its three colleges, DU has a number of academic related programs and centers, namely; Foundation Program (FP), Center for Teaching and Learning (CTL), and Continuing Education Program (CEC).

Foundation Program (FP)

The Foundation Program at Dhofar University is discussed in a different section of the catalogue and the reader is referred to it for more details.
Center for Teaching and Learning (CTL)

The CTL aspires to assist the University in supporting, promoting and achieving excellence and innovation in teaching and research through the following activities:

- Creating a unified campus culture of teaching through idea sharing and discussions.
- Facilitating networking among different colleges.
- Providing services to university teaching through workshops, seminars, conferences, orientation programs for new faculty, and publication of a newsletter on instructional practices.
- Offering individual confidential consultations on teaching, including class organization, pedagogical approaches, assessment and classroom observation.
- Identifying resources on teaching and learning.
- Updating faculty on the latest technology innovation to enhance teaching and learning.
- Serving, at a later phase, as a research center on teaching and learning.

Continuing Education Center (CEC)

The CEC offers quality programs to meet the ongoing professional and personal needs of Dhofar’s adult community at large. It also provides services to applicants who aspire to enter the University but fail in the placement tests conducted by the Foundation program. CEC is dedicated to serving individuals in the private and public sectors in new and innovative ways. It offers solutions to training needs and provides the local community with the combined support of a professional staff and the diversity of resources at DU.

For students who fail to qualify for entry into the FP levels, CEC provides them with intensive studies for one or more semesters, particularly in the English Language, before they take the placement tests again.

CEC provides on-campus and off-campus offerings that include certificate programs, workshops, seminars, conferences, and customized training programs to meet the needs of individuals and organizations. All CEC’s certificate programs, workshops, and other activities are taught by leading experts who bring their hands-on experience into the classroom. Programs and courses are offered in English or Arabic as reflected by the course outlines.

The programs of CEC are developed to create an opportunity for strengthening and updating skills and learning new techniques for achieving personal and organizational goals. CEC prepares participants for a world of change and their organizations for success by using an innovative approach and programs specifically developed by expert DU faculty members.

Academic Support Services
Department of Public Relations and External Cooperation

The mission of the Public Relations and External Affairs Department is to publicize and promote the image of Dhofar University and to establish strong relations with the community and the media. It offers and coordinates services to enhance the visibility of the University in the community. The Department is responsible for issuing news and releases, magazines and brochures, booklets, manuals, flyers and similar material. It manages the DU website by editing it and following-up on new events in the university.

Computing and Networking Center

Computing and Networking Center (CNC) provides an integrated environment of information technology networks that support and enhance the academic activities of students, faculty, staff and administration.

Academic computing capability is provided by numerous laboratories, and campus-wide networked facilities. All laboratories are networked and include access to local and remote servers as well as the Internet. All University buildings and labs are connected with a FIBER Optics network. E-mail services are available to all faculty, students and staff.

CNS services include support and maintenance of central computing server systems, implementation, support and maintenance of campus networks, support for personal computing and personal computer applications, end user training, consulting, negotiation of software, hardware and maintenance contracts for campus-wide use, computer repair services, and the purchase of computer software and supplies.

Library

The University library is located in a three-floor Library Building in the new campus. It occupies over 4000 square meters of open space and can serve more than 3000 DU community users. The library is also open to members of the community outside the University by special arrangement.

The library includes study carrels, large open reading space, computer labs connected to the Internet and to the library databases, audiovisual facilities, rooms to hold meetings and classrooms, and the Center for Teaching and Learning (CTL). These resources serve both male and female DU cohorts.

The current print collection consists of over 14,000 volumes in books, references, and periodicals covering various disciplines: English Language and Literature, Business Administration, Computer Science, Education, Engineering, Graphic Design, etc. The Library provides many electronic resources including: JSTOR which contains over 340 refereed journals and thousands of full text articles; e-library which contains over 58,000 e-books in various fields of
research; Britannica Encyclopedia database; and many periodicals and magazines.

Health Services

The health services unit serves the health needs of students. A physician is available on campus for two hours daily during which students can visit and seek consultation. Urgent and emergency cases are transferred to the nearby Saadah Medical Complex or to city hospitals.

Quality Assurance Board

The Quality Assurance Board is responsible for maintaining a high level of quality teaching, research, and services to students, staff, and the Dhofar University community by suggesting and reviewing DU policies relating to academic, academic support and non-academic services. The QAB develops appropriate qualitative and quantitative measures of teaching and service performance, taking into account local, regional and international recommended practices, including standards set by Oman Quality Board and other international accreditation boards. The QAB consults with all stakeholders before making recommendations and reports directly to the Vice-Chancellor.

Risk Management

The risk management unit aims to create a risk management system and initiate, develop and implement risk management practices across DU. The task of RMU is to integrate risk discussion into strategic deliberations, identifying the inter-relations of risk factors across an organization’s activities. The RMU is responsible to identify and assess risks in the case of DU in the following six areas:

- **Strategic Risk**: Risk that has an impact on DU’s ability to achieve its mission, goals and objectives.
- **Compliance risk**: Risk created by failing to follow Oman’s laws, regulations or university policies that safeguard DU or its members from legal exposures.
- **Financial risk**: Risk which emanates from wrong policies of financial management and budgeting being pursued by DU resulting in possible financial losses to the university.
- **Operational risk**: Risk that affects day to day operations of the DU including the information security risks.
- **Human resources risk**: Risks arising from wrong recruitment, training and retention of able human resources to run the DU efficiently.
- **Reputation risk**: The risk to the reputation of DU as a prestigious institution of higher learning of Oman.
Student Affairs Department

Student Clubs
Students have the right to form, under the supervision of the Student Affairs Department, student clubs in line with the following objectives:

- Engage in academic, physical, scientific and social extra-curricular activities.
- Enhance the relationship among students, instructors, and administrators.
- Develop students’ creativity.
-Expose students to work-related skills.
- Participate in activities that serve their communities.

Student Governance
Students elect annually their representatives to the University Student Faculty Committee (USFC) which represents students on university functions and transmits the student body’s concerns to the Administration of the University.

The USFC is chaired by the Manager of Student Affairs and is composed of eight members: a student representative and a faculty representative from each College in addition to the Foundation Program.

Identification Card (ID)
Student Affairs Department issues an ID card for each new DU student in accordance with the following procedure:

- The student brings 4 passport photos to the Registration Department and gets a temporary ID card.
- The Registration Department sends photos to the Student Affairs Department - Student Services Section.
- Three weeks later the student gets her/his new ID card.

Orientation
During the period of registration and placement exams, the Student Affairs Department arranges orientation sessions for new students. The sessions provide important academic and related information including location of various facilities and services. More than 10 students are usually on the welcoming committee, along with two staff members.

Student Employment Program
DU offers students the opportunity to gain work experience and earn some income as well. Students who wish to join the student employment program may apply through the Student Affairs Department. According to this program,
a student can work for a maximum of 10 hours per week and earn money on an hourly basis.

Counseling Services

The student counseling office provides a comprehensive program of support services to assist Dhofar university students in their adjustment to the demands of university environment.

The services are designed to enhance students educational experience by supporting their development. Its goal is to help students grow in self-understanding and awareness, so they are able to better meet the demands of college life, and enjoy college experience.

The counseling office has a membership in International Association for university and college counseling. Counselors at the office practice counseling under international Guidelines and counseling code of ethics.

Career Guidance Services

The Student Affairs Department provides career guidance services to students through various activities, lectures, and reading materials. Students are assisted with writing resumes, preparing for job interviews, and searching for suitable employment.

Student Housing

The University has 3 buildings in the campus for female students who come from distant places to study at DU. It provides them with subsidized furnished accommodation and local transportation. The University also provides security service and supervision of students where there are 8 of female supervisors and female security guards work 24 hours. Male students who come from distant places are also assisted in finding appropriate accommodation.

Cafeterias and Coffee Shops

DU has two newly built cafeterias, each with two large halls serving the male and female students separately. There is also a coffee shop which is located in the courtyard of the University; it serves snacks, light sandwiches and beverages.

Athletics and Recreation

DU has an agreement with the Nasr club to use their facilities particularly the Football field and the gymnasium which was equipped with University funds.

Counselors of Student Affairs Department organize sporting events such as football, volleyball, swimming, camps, Athletics, trips, and Tennis.
Student Exchange

The University is currently looking into signing agreements with universities in other countries that would permit students from Dhofar University to study abroad for one year (or during the summer), through an exchange program. It is also looking into arranging for students from other universities to come and study for a year or during the summer/fall at Dhofar University.

Currently DU has signed agreement with New-Ulm University in Germany.

Student Disciplinary System

Whereas Dhofar University aims to develop a student’s social character, knowledge, and professional skills, it is also committed to graduate law-abiding, responsible citizens who deserve to carry the DU name. To that end, the University reserves the right to implement a range of disciplinary measures that are commensurate with violations of Omani laws or the rules and regulations of the University.

Disciplinary measures range from warning to expulsion from the University based on the nature of the offence. Each instructor is authorized to apply some disciplinary measures, while suspension or expulsion shall only be administered by the Dean of the College. The harshest action, final expulsion from the University, requires the consent of the University Council. Furthermore, each university employee who observes an assault or offence by any student is required to report the offensive action to the Dean of the College.

Smoking Policy

Smoking inside all buildings on campus is prohibited. Any student, faculty of staff member who violates this policy shall be subjected to the appropriate disciplinary action in accordance with University rules and regulations.
FOUNDATION PROGRAM (FP)
FOUNDATION PROGRAM

Officers of the Program
Fraser Gray Director (Acting)
Faical Al Hamadi Deputy Director

Organizational Structure
The Foundation program is headed by a Director and is comprised of the English Language Unit (ELU) and the Mathematics and Information Technology Unit.

Vision
The vision of Foundation Program is to ensure an educationally prolific environment in which learning and teaching converge to bring about the best positive outcomes and all-round productive development of the participants, predominantly in four areas, English, Math, IT and Study Skills.

Mission
The mission of FP is to find a niche in equipping students to pursue their specialized areas of study at colleges by imparting quality education/training in English, Math, Information Technology and Study Skills.

English Language Unit
Coordinators: Al Ani, Ahmed; Hussein, Rehana; Al Mughrabi, Hyder
Lecturers: Al Ani, Ahmed; Al Heyali, Rafa Yahya; Gray, Fraser; Al Hawamdeh; Sameerah
Instructors: Al Ibrahim, Fatima; Abdul Latheef, V; Alder, Philip; Al-Mughrabi, Hyder Ali; Charuvila John, Merin; Devi, Rama; Eteiwi, Adnan; Irudayasamy, Julius; Jaboub, Fatima; James, Fry; Kamal, Saba; Kahob, Fatima; Khalifah, Faysal Hamadi; Khan, Razia; Kolanchery, George; Menon, S. Hridya; More, Anne; Nair, Maya; Rao, Sadanand; Rao, U. B.; Rajagopal, Suchi; Mathew, Yvette; Francis, Stephen; Sharma Husain, Rehana; Veetil Nambiar, Mahija

Administrative Staff;
Executive Secretaries: Bait Mubarak, Hanaa;
 Secretary: Burham, Fatima.
Program Overview

The Foundation Program is designed for students who are not sufficiently prepared to join the academic programs at the university. Incoming students may generally be required to spend one or more semesters in the Foundation Program depending on their results of the placement tests administered by the University. This program is designed to equip students with the knowledge and skills in English language, Study Skills, Information Technology, and Mathematics that will allow them to join their chosen colleges.

All Foundation Program students who fail the same level of English three times will be dropped from the program. Students dropped from the Foundation Program are not allowed to register in the program again. However, after the lapse of at least one academic year during which the students study elsewhere to improve their skills in English they may be admitted directly to the University programs, if they fulfill the FP placement admission criteria that are mentioned earlier in this Catalogue.

Study Plan

The following table summarizes the FP study plan:

<table>
<thead>
<tr>
<th>Level</th>
<th>English</th>
<th>Mathematics</th>
<th>Information Technology</th>
<th>Study Groups (**)</th>
<th>Total Hrs per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>Level 2</td>
<td>20</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>Level 3</td>
<td>20</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>28</td>
</tr>
</tbody>
</table>

Structure of the Program

The Foundation Program is designed to bridge the gap between secondary education and university undergraduate studies. The program’s focus is to ensure the students’ readiness to embark on their university studies. The curriculum is aligned with the learning outcomes stated in the Oman Academic Standards for General Foundation Programs. The emphasis of the English program is on the general communication and academic skills. The Math
program is divided into Basic, Applied and Pure sessions, while the IT program focuses on the skills required to use technology effectively in routine studies.

Tests and alternative assessment schemes are used to evaluate the students’ performance throughout the semester.

The FP Student Support unit offers personal and academic support to FP students.

English Language Unit

Since English is the medium of instruction at Dhofar University, there is a definite need to approach the teaching of English at the University in a systematic, meaningful, and purposeful manner. The English Language Unit offers incoming students with low proficiency in English an intensive program to help them pursue their studies in the major of their choice through the medium of English with the aim of immersing students in the English language.

Learning Outcome Standards for English

- Actively participate in a discussion on a topic relevant to their studies by asking questions, agreeing/disagreeing, asking for clarification, sharing information, expressing and asking for opinions.
- Paraphrase information (orally or in writing) from a written or spoken text or from graphically presented data.
- Prepare and deliver a talk of at least 5 minutes. Use library resources in preparing the talk, speak clearly and confidently, make eye contact and use body language to support the delivery of ideas. Respond confidently to questions.
- Write texts of a minimum of 250 words, showing control of layout, organization, punctuation, spelling, sentence structure, grammar and vocabulary.
- Take notes and respond to questions about the topic, main ideas, details and opinions or arguments from an extended listening text (e.g. lecture, news broadcast).
- Follow spoken instructions in order to carry out a task with a number of stages.
- Listen to a conversation between two or more speakers and be able to answer questions in relation to context, relationship between speakers, register (e.g. formal or informal).
- Read a one to two page text and identify the main idea(s) and extract specific information in a given period of time.
Course Descriptions

Level 1
FPE 101A Foundation program English Level 1 (28hrs)
FPE 101A is an Elementary Level Intensive English course that provides students with the opportunity to engage in the development of the English language skills as well as good study habits. The main skills taught are Reading, Writing, Listening, and Speaking. The learning outcomes are aligned with Oman Academic Standards. By completing this course the students are expected to have a good transfer into Level 2, the Pre-Intermediate Level.

Level 2
FPE 102B Foundation program English Level 2 (20hrs)
FPE 102B is a Pre-Intermediate Level Intensive English course that provides students with the opportunity to engage in the development of the English language skills as well as good study habits. The main skills taught are Reading, Writing, Listening, and Speaking. The learning outcomes are aligned with the Oman Academic Standards. By completing this course the students are expected to have a smooth transfer into Level 3, The Intermediate Level.

Level 3
FPE 103C Foundation program English Level 3 (20hrs)
FPE 103 C is an Intermediate Level Intensive English course that provides students with the opportunity to engage in the development of the English language skills as well as good study habits. The main skills taught are Reading, Writing, Listening, and Speaking. The learning outcomes of this course are aligned with Oman Academic Standards. By completing this course the students are expected to have a smooth transfer to the university programs.
Mathematics and Information Technology

Unit

Mathematics

This three-semester course aims at bridging the gaps in students’ knowledge in mathematics. Basic Mathematics is taken in the first semester (Level 1) while Applied OR Pure Mathematics is taken in the second semester (Level 2) based on the student’s major in the University.

The details of the courses are as follows:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hrs/week</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPM-101A (Basic)</td>
<td>Foundation Program Math Level 1</td>
<td>5</td>
</tr>
<tr>
<td>FPM-102B (Pure& Applied)</td>
<td>Foundation Program Math Level 2</td>
<td>5</td>
</tr>
</tbody>
</table>

Learning Outcomes

- Define a function graphically and by set, finding the domain of certain type of functions, and evaluating functions.
- Graph linear and quadratic functions.
- Apply the Concept of Combining and Composite functions by adding, subtracting and multiplying functions.
- Apply the concept of Inverse and one to one functions.
- Identify exponential functions, draw their graphs, and solve their equations.
- Define the Logarithmic functions, draw their graphs, and solve their equations.
- Define and apply the rules, identities, and proof of trigonometric functions.
- Define and solve different trigonometric functions, and express them graphically.
- Know the difference between a sequence and a series.
- Know the basic equations of a parabola and an ellipse.
- Measure central tendency, mean, median, mode, variance, standard deviation, sample space and probability.
Course Descriptions

FPM 101A Foundation Program Math Level-1 (Basic) (5 hrs.)
Basic Mathematics skills emphasize conceptual understanding and problem solving. The program covers Basic Algebraic Operations, Polynomials, Exponents, Radicals, Rational Expressions First Degree Equations and Inequalities, Quadratic Equations, Equation of a Circle, Straight Lines and Basic Trigonometry.

FPM-102B Foundation Program Math Level-2 (Pure & Applied) (5 hrs.)
The aim of this course is to ensure that the learners are equipped with the knowledge necessary for further study of mathematics at higher levels and for pursuing the study of other curricular subjects. The program covers Graphs & Functions, Exponential & Logarithmic Functions, System of Linear Equations, Matrices, Basic Statistics and Introduction to Probability.

Information Technology
This two-semester course aims to bridge the gap for students who wish to join Dhofar University and lack pre-college Information Technology (IT) fluency and competency skills. It emphasizes the essential parts of a standard curriculum in IT as required by Oman Academic Standards for GFP. The curriculum gives the students a basic understanding of computers, the use of word-processing software, and essential IT skills. It uses a practical approach by investigating a variety of situations from across the spectrum of technology. Furthermore, it provides students with knowledge of graphics and the use of the Internet. The details of the IT courses is as below

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Contact Hrs/week</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPT 101A</td>
<td>Foundation Program IT Level 1</td>
<td>3</td>
</tr>
<tr>
<td>FPT 102B</td>
<td>Foundation Program IT Level 1</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Descriptions

FPT 101A Foundation program IT Level 1 (3 hrs.)
The aim of this course is to ensure that the learners are equipped with the Computing and IT knowledge and skills necessary to source, communicate, and process information related to higher education. Training with various day-to-day software packages such MS Windows, MS Word is covered hands on. The learners are also expected to cover fundamental concepts related to IT and basic computer operation and file management.

FPT 102B Foundation program IT Level 2 (3 hrs.)
The aim of this course is to ensure that the learners are equipped with the Computing and IT knowledge and skills necessary to source, communicate, and process information related to higher education. Training with various day-to-
day software packages such MS Excel, MS PowerPoint, and Animation Software is experienced hands on. The learners are also expected to learn concepts and practices related to Internet and its usage in day-to-day life.

Study Skills

Study Skills are integrated in the English, Math and IT programs and aim to help students develop the range of useful study skills that they need to succeed in college. They learn how to use and organize their time, read faster with comprehension, expand their vocabulary, take good notes in class, keep track of assignments, interpret and analyze graphic information, and adopt the most effective communication strategies.

Placement in the Foundation Program

Students are placed in the appropriate Level based on their results in the placement tests for English, Math and IT.

The policy of placing the students in the placement test is given in the following table

Placement criterion for different levels (English)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Level</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 39</td>
<td>Level-1</td>
<td>Students who score 70+ on English Test and those who produce a certificate of IELTS with a band of 5 and TOEFL score of 400 are exempted from doing the Foundation Program. Such students join their Majors.</td>
</tr>
<tr>
<td>40 – 55</td>
<td>Level-2</td>
<td></td>
</tr>
<tr>
<td>56 – 70</td>
<td>Level-3</td>
<td></td>
</tr>
<tr>
<td>70 and above</td>
<td>Major</td>
<td></td>
</tr>
</tbody>
</table>

Placement criterion for different levels (Math)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Level</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 49</td>
<td>Level-1</td>
<td>Students who score 60+ in Math Test are exempted from doing the Foundation Program. Such students join their Majors.</td>
</tr>
<tr>
<td>50 – 59</td>
<td>Level-2</td>
<td></td>
</tr>
<tr>
<td>60 – 100</td>
<td>Exempted</td>
<td></td>
</tr>
</tbody>
</table>
Placement criterion for different levels (IT)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Level</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 59</td>
<td>Level 1</td>
<td>Students who score 70+ in IT Placement test or on production of IC³ or ICDL certificate or any other equivalent certificate are exempted from taking IT; These students can join the majors.</td>
</tr>
<tr>
<td>59 – 69</td>
<td>Level 2</td>
<td></td>
</tr>
<tr>
<td>70 – 100</td>
<td>Exempted</td>
<td></td>
</tr>
</tbody>
</table>

Promotion policy and Exit from FP

Students in FP are evaluated regularly to help determine their progress and attainment of the set goals. They are provided with every opportunity to be promoted to upper levels based on the promotion policy requirements stated in each syllabus. Students who fulfill the promotion requirements of English Level three exit the FP and join the university programs. All English Level three students are required to take the EXIT Test as part of the promotion requirements to the university.

Exemption from the Foundation English Program

Students enrolled in any of the English Levels at the FP can be admitted to the university programs (year 1) if they present an official IELTS certificate (band 5 or above) or equivalent evidence.

Students who score 70+ in IT Placement test or on production of IC³ or ICDL certificate or any other equivalent certificate are exempted from taking IT;
COLLEGE OF ARTS AND APPLIED SCIENCES (CAAS)
COLLEGE OF ARTS AND APPLIED SCIENCES

Officers of the College

Fouad Chedid Dean
Lakshmi Narayanan Assistant Dean
Noor Al-Qamar Amer Jeed Senior Executive Secretary

Organizational Structure

The College of Arts and Applied Sciences is composed of five departments: the Department of Computer Science, the Department of Education, the Department of Languages and Translation, the Mathematics and Sciences Unit, and the Department of Social Sciences. These departments report to the Dean of the College of Arts and Applied Sciences.

Vision

The College of Arts and Applied Sciences aspires to offer high quality programs in the humanities, basic, natural and social sciences that are recognized nationally and internationally and prepare highly motivated students to be successfully engaged citizens in an increasingly technological and global society.

Mission

The College of Arts and Applied Sciences (CAAS) provides the core of liberal arts education at Dhofar University. It aims at enabling all University students to benefit from sustained independent learning through the general University Requirement courses and the CAAS majors. The College focuses on reaching excellence in learning through interdisciplinary knowledge and skills in arts and sciences, the development of critical thinking skills, and engagement in the society with focus on preserving the cultural values of the Omani society.

Functions of the College

The College of Arts and Applied Sciences has four main functions:

- Offering the required and elective courses and necessary academic advising to the students in the diploma programs, the BA/BS programs, and graduate programs that are listed below;
- Offering General University Requirement and elective courses (about 30 credits for each academic program) to the students of the College of Commerce and Business Administration and the College of Engineering;
- Supporting faculty members to conduct research, publish, and participate in professional activities; and
- Offering services to the community in the form of professional consultation, public lectures, and general academic and cultural activities.
Academic Programs

The College of Arts and Applied Sciences offers 13 academic undergraduate programs, four graduate programs and two minors, all of which are designed according to the National Qualifications Framework for Higher Education in the Sultanate of Oman. Those programs are:

- Diploma in Computer Science
- Diploma in Chemistry
- Diploma in English Language
- Diploma in Mathematics
- Diploma in Social Work
- Bachelor of Arts in Arabic Language
- Bachelor of Arts in Social Work
- Bachelor of Arts in English Language
- Bachelor of Arts in Translation
- Bachelor of Education in English Language, Mathematics, Science, or Information Technology
- Bachelor of Law
- Bachelor of Science in Computer Science
- Bachelor of Science in Mathematics
- Master in Curriculum and Instruction: Teaching English Language
- Master of Education in Educational Administration (in Arabic)
- Master of Education in Counseling (in Arabic)
- Master of Science in Information Technology
- Minor in Arabic Language
- Minor Arabic Literature

Admission Criteria

To be admitted to any undergraduate program offered in the CAAS, a student is required to:

- Have a General Education Certificate or equivalent
- Take placement tests to determine their levels in English, Mathematics and Information Technology skills.

Any other specific program requirements are indicated in the related section.

Graduation Requirements

To receive a Diploma or a Bachelor Degree in any of the majors in the CAAS, the student must satisfactorily complete the required credit hours for his/her major with an overall minimum average of 65 percent. Additionally Bachelor graduate
must attain a cumulative average of 70 percent in the major courses. The total number of required credits varies by major and by placement level in English.

The number of credits required for graduation depends on the program pursued and the degree sought. The course requirements consist of three components: University requirements, college requirements, and Major (program) requirements. The following table summarizes the number of credits normally required for each Diploma and Bachelor granting program in the CAAS.
<table>
<thead>
<tr>
<th>Program</th>
<th>University</th>
<th>College</th>
<th>Major</th>
<th>Total Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diploma in Computer Science</td>
<td>24</td>
<td>3</td>
<td>27</td>
<td>6</td>
</tr>
<tr>
<td>BS in Computer Science</td>
<td>30</td>
<td>12-13</td>
<td>57</td>
<td>21</td>
</tr>
<tr>
<td>Diploma in English Language</td>
<td>27</td>
<td>6</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>BA in English Language</td>
<td>30</td>
<td>12</td>
<td>42</td>
<td>36</td>
</tr>
<tr>
<td>BA in Translation</td>
<td>30</td>
<td>12</td>
<td>48</td>
<td>30</td>
</tr>
<tr>
<td>B. Ed. in English Language</td>
<td>30</td>
<td>6</td>
<td>69</td>
<td>15</td>
</tr>
<tr>
<td>B. Ed. in Information Technology</td>
<td>30</td>
<td>6</td>
<td>72</td>
<td>12</td>
</tr>
<tr>
<td>B. Ed. In Mathematics</td>
<td>30</td>
<td>6</td>
<td>77</td>
<td>9</td>
</tr>
<tr>
<td>Diploma in Mathematics</td>
<td>27</td>
<td>3</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>BS in Mathematics</td>
<td>30</td>
<td>12-13</td>
<td>58</td>
<td>21</td>
</tr>
<tr>
<td>Diploma in Social Works</td>
<td>24</td>
<td>6</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>BA in Social Works</td>
<td>30</td>
<td>12</td>
<td>66</td>
<td>12</td>
</tr>
<tr>
<td>Bachelor of Law</td>
<td>15</td>
<td>0</td>
<td>101</td>
<td>14</td>
</tr>
<tr>
<td>MA in Curriculum & Instruction: Teaching English Language</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>6</td>
</tr>
<tr>
<td>M. Ed. In Educational Administration</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>M. Ed. In Counseling</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>Master of Science in Information Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis Option</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>15+6*</td>
</tr>
<tr>
<td>Course Work Option</td>
<td></td>
<td></td>
<td></td>
<td>18+3**</td>
</tr>
</tbody>
</table>

* Master Thesis
** Research Project
University Requirements

A total of 30 credit hours of course work in Arabic, English, mathematics, social sciences, and computer sciences are required for each of the Bachelor programs. A total of about 24 credit hours of these courses are required for the 2-year diploma programs. Those courses are listed under the Program of Study for each program.

College Requirements

Undergraduate students who are enrolled in any of the academic programs in the College of Arts and Applied Sciences are required to take a minimum of twelve credits in mathematics, natural sciences, social sciences, and elective courses.

Program Requirements

Program course requirements are listed in the department section.
DEPARTMENT OF COMPUTER SCIENCE

Personnel

Department Chairperson Sayed, Biju.
Associate Professors Dekdouk, Abdulkader.
Assistant Professors Chaudhry, Shafique; Hussain, Norlaila; Haddad, Hedi; Sayed, Biju.
Lecturers Abbasi, Issa; Madanan, Mukesh.
Secretary Al Mashani, Maryam.

Mission

The computer science department aims at providing students with balanced theoretical and practical background in a variety of computer science topics. Through the fulfillment of coursework, practical projects, and community service activities, students are endowed with the necessary skills and experiences to develop successful careers in computer science and information technology. The program also prepares students to pursue higher education and research in computer science by promoting life-long independent learning.

Objectives

The objectives of the Computer Science programs are to:

- Promote effective learning by exposing students to balanced theoretical and practical experiences that demand thinking and practice;
- Provide excellent teaching by adopting advanced knowledge in computing and other information and communication technologies and effective teaching practices;
- Offer the students opportunities to develop careers in computer science and information technology;
- Prepare students to assume positions in public and private sectors, computer industry, or educational institutions;
- Offer the graduates opportunities to pursue higher education in computer science;
- Provide students with solid liberal education, training and appropriate learning skills and values; and
- Promote life-long independent learning.

Learning Outcomes

Based on the objectives mentioned above, the specific educational outcomes for the Computer Science undergraduate programs are by the time of graduation:

- Mastering knowledge of basic and advanced computer science topics
• Exhibiting an ability to analyze a problem, and identify and define the computing requirements appropriate to its solution
• Demonstrating an ability to design, implement and evaluate a computer-based system, process, component, or program to meet desired needs
• Having an understanding of mathematics appropriate for computer science
• Demonstrating an ability to locate and use technical information from multiple sources
• Having an ability to use current techniques, skills, and tools necessary for computing practices
• Exhibiting an understanding of the links between technology and society
• Having an ability to participate effectively in a class or project team
• Having an ability to undertake independent learning
• Demonstrating an ability to communicate effectively in speech and writing
• Be prepared to enter a graduate program in Computer Science
• Having an understanding of professional, ethical and social responsibilities

Degrees Offered

The Computer Science Department offers a Diploma, a Bachelor of Science Degree in Computer Science and Master of Science in Information Technology.

Career Opportunities

Computer Science graduates may find career opportunities in almost any enterprise, governmental agency, and software development firm. They may be hired as system analysts and designers, trainers, instructors, system engineers, programmers, database developers and managers, network managers, and computer science consultants.

Diploma Program

The diploma degree is 60 credit hours program distributed over two years of studies. It is competency oriented as required by the IT industry standards with emphasis on the following concepts:

• Computer Platforms
• System Analysis
• Programming
• Database Design
• Personal Skills Development.

The program strikes a balance between theory and practice. Although it emphasizes practical work, it also covers the theoretical foundations in order to establish adequate links with education at a higher level and keep the students abreast of current knowledge in the field. Students will have hands-on experience with computer hardware, software, and methodologies of software evaluation and development of computer applications with strong emphasis on developing programming skills, including programming for the World Wide
Web. In addition, the program follows a modern liberal arts approach by exposing the students to a sound knowledge of general sciences, the arts, study of the Omani culture, mastery of general computing skills, and efficient usage of Arabic and English languages.

Although the Diploma holders may exit the university education with this degree, they will also have opportunities to continue their education to complete a Bachelor of Science in Computer Science if they satisfy the requirements for admission to that program, then all the credits that are successfully completed in the Diploma program are transferable to the B.S. program.

Graduation Requirements

To receive a Diploma in Computer Science, students must satisfactorily complete 60 credit hours that are described in the Program of Study with an overall minimum average of 65 percent.

Program of Study

The courses for the Diploma in Computer Science should be selected from the following groups of courses.

University Requirements

Student working for a bachelor degree in an engineering program must complete a total of 24 credit hours of general educational (university) requirements distributed as follows:

- 3 credits of Arabic: ARAB 101 (Academic Writing in Arabic)
- 6 credits of Social and Cultural Studies: SOCS 102 - Omani Society, and SOCS 100 - World Civilization I
- 9 credits of English communication skills: ENGL 101 (Basic Academic English I), ENGL 102 (Basic Academic English II), ENGL 203 (Advanced Academic English I).
- 3 credits of computer literacy: CMPS 100B (Introduction to Technical Computing for the Sciences)
- 3 credits of mathematics: MATH 199 (Calculus I).

College Requirements

A one, 3-Credit Hours course is chosen from any other major.

Program Requirements

The Program Requirements consists of eleven course encompassing 33 credit hours distributed as follows.
Major Core Courses: The following nine core course encompassing 27 credit hours are required:

- CMPS 110: Introduction to Programming
- CMPS 160: Data Structures
- CMPS 180: Digital System Design
- CMPS 215: Computer Organization with Assembly Language
- CMPS 240: Analysis of Algorithms
- CMPS 250: Computer Networks
- CMPS 260: Operating Systems
- CMPS 270: Database Systems
- MATH 370: Discrete Mathematics

Major Elective Courses: Two courses encompassing 6 credit hours are chosen from the following set:

- CMPS 200: Analysis and Design of Information Systems
- CMPS 205: Introduction to Multimedia Concepts
- CMPS 210: Digital Image and Video Processing
- CMPS 225: Introduction to Data Communications
- CMPS 230: Introduction to System Programming
- CMPS 235: Numerical Computing
- CMPS 255: Graphical User Interface
- CMPS 265: Introduction to Microprocessors
- CMPS 280: Introduction to Internet Programming & Web Design
- CMPS 290: Introduction to Database Management
- CMPS 315: Advanced Programming in C++
- CMPS 320: Introduction to Computer Security
- CMPS 340: Advanced Programming in Java
Study Plan

<table>
<thead>
<tr>
<th>Year I</th>
<th>Semester 1 (Fall) 15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
</tr>
<tr>
<td>CMPS 100B</td>
<td>Introduction to Technical Computing for the Sciences</td>
</tr>
<tr>
<td>CMPS 110</td>
<td>Introduction to Programming</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English</td>
</tr>
<tr>
<td>MATH 199</td>
<td>Calculus I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year I</th>
<th>Semester 2 (Spring) 15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>CMPS 160</td>
<td>Data Structures</td>
</tr>
<tr>
<td>CMPS 180</td>
<td>Digital System Design</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
</tr>
<tr>
<td>MATH 370</td>
<td>Discrete Mathematics</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year II</th>
<th>Semester 3 (Fall) 15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>CMPS 215</td>
<td>Computer Organization with Assembly Language</td>
</tr>
<tr>
<td>CMPS 240</td>
<td>Analysis of Algorithms</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
</tr>
<tr>
<td>SOCS 100</td>
<td>World Civilizations I</td>
</tr>
<tr>
<td></td>
<td>Major Elective (Suggested: CMPS200)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year II</th>
<th>Semester 4 (Spring) 15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>CMPS 250</td>
<td>Computer Networks</td>
</tr>
<tr>
<td>CMPS 260</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>CMPS 270</td>
<td>Database Systems</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
</tr>
<tr>
<td></td>
<td>General Elective</td>
</tr>
</tbody>
</table>

Completion of the Diploma Program in Computer Science - Total Credits 60

Bachelor of Science Program

The BS Computer Science is a four-year, 120-121 Credit Hours program designed to enable its holders to contribute to improving and modernizing the lifestyle and work culture through the computerization and automation of a wide range of processes in the industries and the society. The program content is very much in line with the current standards and guidelines established by the Association of Computing Machinery (ACM).
To graduate with a Bachelor of Science in Computer Science, students must satisfactorily complete the program of study that is specified below with an overall minimum average of 65 percent, and a cumulative average of 70 percent in all computer science courses.

Graduation Requirements

To graduate with a BS in Computer Science, students must satisfactorily complete 120 credit hours of course work from the courses that are described in the Program of Study with an overall minimum average of 65 percent, and a cumulative average of 70 percent in the major courses.

Program of Study

University Requirements

The BS general education requirements include the following 10 course comprising 30 credit hours:

- ARAB 101: Academic Writing in Arabic
- CMPS 100B: Introduction to Technical Computing for the Sciences
- ENGL 101: Basic Academic English I
- ENGL 102: Basic Academic English II
- ENGL 203: Advanced Academic English I
- ENGL 204: Advanced Academic English II
- MATH 199: Calculus I
- SOCS 100: World Civilizations I
- SOCS 102: Oman Society
- SOCS 200: World Civilizations II

College Requirements

This set consists of four courses comprising a minimum of 12 credit hours distributed as follows:

- One course in physical/natural sciences electives
- One course in social/humanities electives
- Two courses in any other majors. Suggested courses are ENGL 360 and PHYS 210.

Program Requirements

This set consists of 25 courses comprising 78 credit hours distributed as follows:

Major Core Courses

18 courses encompassing 57 credit hours

- CMPS 110: Introduction to Programming
• CMPS 160: Data Structures
• CMPS 180: Digital System Design
• CMPS 215: Computer organization with Assembly Language
• CMPS 240: Analysis of Algorithms
• CMPS 250: Computer Networks
• CMPS 260: Operating Systems
• CMPS 270: Database Systems
• CMPS 310: Programming Languages
• CMPS 350: Theory of Computation
• CMPS 405: Artificial Intelligence
• CMPS 410: Software Engineering
• CMPS 425: Computer Graphics
• CMPS 490: Final Project
• MATH 200: Calculus II
• MATH 250: Probability and Statistics
• MATH 320: Linear Algebra I
• MATH 370: Discrete Mathematics

Major Elective Courses

Seven courses encompassing 21 credit hours (Three of these courses should be above 300 levels)

• CMPS 200: Analysis and Design of Information Systems
• CMPS 205: Introduction to Multimedia Concepts
• CMPS 210: Digital Image and Video Processing
• CMPS 225: Introduction to Data Communications
• CMPS 230: Introduction to System Programming
• CMPS 235: Numerical Computing
• CMPS 255: Graphical User Interface
• CMPS 265: Introduction to Microprocessors
• CMPS 280: Introduction to Internet Programming & Web Design
• CMPS 290: Introduction to Database Management
• CMPS 315: Advanced Programming in C++
• CMPS 320: Introduction to Computer Security
• CMPS 330: Computer Architecture
• CMPS 340: Advanced Programming in Java
• CMPS 360: Parallel Computing
• CMPS 370: Database Management Systems
• CMPS 400: Human-Computer Interaction
• CMPS 420: Internet Programming and Web Design
• CMPS 430: Compiler Construction
• CMPS 440: Selected Topics in Computer Science
• CMPS 455: Digital Media
• CMPS 465: Scientific Visualization
• CMPS 475: Advanced Computer Graphics
CMPS 485: Computer Aided Geometric Design

Study Plan

<table>
<thead>
<tr>
<th>Year I</th>
<th>Semester 1 (Fall)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 100B</td>
<td>Introduction to Technical Computing for the Sciences</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 110</td>
<td>Introduction to Programming</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English</td>
<td>3</td>
</tr>
<tr>
<td>MATH 199</td>
<td>Calculus I</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2 (Spring)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>CMPS 160</td>
<td>Data Structures</td>
</tr>
<tr>
<td>CMPS 180</td>
<td>Digital System Design</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
</tr>
<tr>
<td>MATH 370</td>
<td>Discrete Mathematics</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year II</th>
<th>Semester 3 (Fall)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>CMPS 215</td>
<td>Computer Organization w/ Assembly Language</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 240</td>
<td>Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 100</td>
<td>World Civilizations I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Elective (Suggested: CMPS200)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 4 (Spring)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>CMPS 250</td>
<td>Computer Networks</td>
</tr>
<tr>
<td>CMPS 260</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>CMPS 270</td>
<td>Database Systems</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
</tr>
<tr>
<td></td>
<td>General Elective</td>
</tr>
</tbody>
</table>
Year III
Semester 5 (Fall) 16 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPS 310</td>
<td>Programming Languages</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 204</td>
<td>Advanced Academic English</td>
<td>3</td>
</tr>
<tr>
<td>MATH 200</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 6 (Spring) 15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPS 350</td>
<td>Theory of Computation</td>
<td>3</td>
</tr>
<tr>
<td>MATH 320</td>
<td>Linear Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilizations II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Year IV
Semester 7 (Fall) 16 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPS 405</td>
<td>Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 410</td>
<td>Software Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CMPS 425</td>
<td>Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 250</td>
<td>Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 8 (Spring) 16 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPS 490</td>
<td>Final Project</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Physical/ Natural Sciences Elective</td>
<td>3-4</td>
</tr>
</tbody>
</table>

Completion of the BS in Computer Science - Total Credits 120-121

Course Descriptions

CMPS 100A Introduction to Technical Computing for the Arts (3 crs.)
This course introduces technical computer literacy. Students are expected to learn how computers affect the way we live and work. Students will become familiar with typical software applications such as database application, web page design and publication software. In addition, the course will familiarize with the basics and concepts of multimedia. Prerequisite: FPT 102B or FPTL 100. This course is open to arts/engineering students only.
CMPS 100B Introduction to Technical Computing for the Sciences (3 crs.)
In addition to covering some aspects of CMPS100A like database application and web page design, this course provides an extension to HTML/java scripts. Topics also include programming concepts, using appropriate tool, whereby students will be introduced with concepts like loops and conditional statements. Prerequisite: FPT 102B. This course is open to science/business/engineering students only.

CMPS 105 Introduction to Computer Graphics (3 crs.)
Through lectures, demonstrations, and practical experiences, the course covers the basics of page layout programs and image handling, utilizing various desktop publishing software programs. An emphasis is placed on graphics for print: posters, brochures, etc. Prerequisite or Co-requisite: CMPS 100A or CMPS 100B. This course cannot be taken by computer science students.

CMPS 106 Introduction to Web Design (3 crs.)
This course introduces the application of graphic design techniques to develop effective, aesthetically, pleasant, and useful websites. It serves as an introduction to the basic principles of web design. Students will learn how to plan and develop well-designed websites that combine effective navigation techniques with the creative use of graphics and typography. They will also learn the appearance of their choices in different browsers and gain a critical eye for evaluating website design. Prerequisite or Co-requisite: CMPS 100A or CMPS 100B. This course cannot be taken by computer science students.

CMPS 110 Introduction to Programming (3 crs.)
Introduction to the methodology of programming and its use in solving a variety of problems with computers. Topics include the introduction of a high level language with emphasis on procedural abstraction, adequate programming style and the concept of algorithm design. Prerequisite or Co-requisite: CMPS 100A or CMPS 100B.

CMPS 160 Data Structures (3 crs.)
This course is a continuation of CMPS 110. It emphasizes algorithm design and programming techniques in large programs. It also includes detailed studies of data structures and data abstraction such as queues, linked lists, and trees. The course also offers an introduction to program complexity and verification. Prerequisite: CMPS 110.

CMPS 180 Digital System Design (3 crs.)
An introduction to the digital design of electronic circuits. Digital circuits are employed in the design and construction of systems such as digital computers, data communications, digital recordings and other applications that require digital hardware. The course provides the students with the basic tools for the design of digital circuits as well as the fundamental concepts in the design of digital systems such as combinational logic, synchronous sequential logic, programmable logic and other essential concepts. Prerequisite: CMPS 100A or CMPS 100B.
CMPS 200 Analysis and Design of Information Systems (3 crs.)
This course highlights the main techniques used to model and design information systems. It differentiates between the conceptual, logical, and physical levels of modeling. Using a structured method, it presents the main phases of analysis and design, including requirement analysis, analysis, design, implementation, and testing. In this course, the student will learn the most important techniques of conceptual data modeling (e.g. entity-relation approach) and process modeling (e.g. information flow diagrams). The student will also learn the main techniques of processing design. Prerequisite or Co-requisite: CMPS 100A or CMPS 100B.

CMPS 205 Introduction to Multimedia Concepts (3 crs.)
Introducing the general concepts of multimedia. Students will learn the principles of graphics, sound, video, and animation. Topics include learning scripting techniques with the most common multimedia programs available to develop and create an interactive multimedia project. Prerequisite: CMPS 100A or CMPS 100B.

CMPS 210 Digital Image and Video Processing (3 crs.)
Introducing the basic techniques of automated (computer) processing, analysis, and understanding of image/video data. Topics include geometry and physics of image formation, image enhancement, feature extraction, video imagery, and multi-view imagery analysis. Prerequisite: CMPS 100A or CMPS 100B.

CMPS 215 Computer Organization with Assembly Language (3 crs.)
This course deals with the fundamentals of computer organization using assembly language as an aid to studying computer organization. Topics include machine level representation of data, digital logic design, ALU and CPU design, memory system organization and architecture, object code, microprogramming, CISC, RISC, and parallel computers. Prerequisite: CMPS 180.

CMPS 225 Introduction to Data Communications (3 crs.)
An introduction to Data Communications concepts with practical applications to enhance understanding of those concepts. The course includes examination of the principles of data communications for computers and computer terminals, including data transmission performance, communications software, protocols, switching, and simple networks. Easy-to-understand language and clear examples explain many technical terms associated with data communications networks. Prerequisite: CMPS 215.

CMPS 230 Introduction to System Programming (3 crs.)
Features of the C language commonly used in systems programming, application to systems programming in a UNIX environment. Topics include C pre-processor macros, I/O, bit-manipulation facilities, timesharing system concepts, file permissions, shell script programming, make files and source code control, basic system calls like fork and exec, pointers and dynamic memory allocation, libraries and relocation and linking concepts including assembler handling of symbol tables. Prior knowledge of a programming language similar to C is presumed. Prerequisite: CMPS 215.
CMPS 235 Numerical Computing (3 crs.)
A survey of the following areas: set theory, mathematical induction, number theory, relations, functions, algebraic structures and introductory graph theory. The topics to be discussed are fundamental to most areas of mathematics and have wide applicability to computer science. Prerequisite: MATH 370.

CMPS 240 Analysis of Algorithms (3 crs.)
Examination of the techniques of designing and analyzing efficient algorithms and advanced data structures. Topics include: asymptotic analysis, divide and conquer, greedy algorithms, dynamic programming, and optimization algorithms. Students will apply the techniques to problems such as searching, sorting, graphs, matrices, and set manipulation. Prerequisite: CMPS 160 and MATH 370 for Computer Science students only.

CMPS 250 Computer Networks (3 crs.)
This course discusses the foundation of computer networks. It presents a top-down view of the layered architectural elements of communication systems, focusing on the Internet and TCP/IP. Topics include client/server systems, packet switching, protocol stacks, queuing theory, application protocols, socket programming, remote service calls, reliable transport, UDP, TCP, and security. Prerequisite: CMPS 160 and CMPS 180.

CMPS 255 Graphical User Interface (3 crs.)
This course deals with concepts and techniques used in the design and implementation of interactive systems. Topics include interface design guidelines, human factors, technical methods of user interface design, and the design and execution of usability studies. Students will learn how to apply various techniques through designing, creation, and testing of an interactive software application. Prerequisite: CMPS 160.

CMPS 260 Operating Systems (3 crs.)
An overview of operating systems. Topics include: operating system principles, scheduling and resource management, virtual memory, file systems, concurrent processing and synchronization, Deadlocks, and Disk Scheduling. Programming under UNIX is an essential part of this course with the emphasis on concurrency, and inter-process communication (IPC). Prerequisites: CMPS 215.

CMPS 265 Introduction to Microprocessors (3 crs.)
This course covers the historical development of microprocessors including its internal structure, units’ functions, and principles of operation. Dealing with synchronous data transfer inside the computers, the pin configuration, and pins functions are covered. The modern technologies of pipelining and parallel processing are also included. Prerequisite: CMPS 180.

CMPS 270 Database Systems (3 crs.)
An introduction to data modeling and various relational models (with relational algebra, and calculus) in a database system. Other topics include: the entity relationship model, SQL and integrity constraints, file organization and index files; and normalization. Prerequisite: CMPS 160, CMPS 200, and MATH 370.
CMPS 280 Introduction to Internet Programming & Web Design (3 crs.)
This course provides an introduction to programming on the internet. It covers the “nuts and bolts” of internet programming. In addition to core fundamentals, students are introduced to web page construction, HTML, managing an account on a web server, client-server model, and JavaScript programming. Prerequisite: CMPS 160.

CMPS 290 Introduction to Database Management (3 crs.)
The main objective of this course is to introduce students to fundamentals of database technology by studying databases from three viewpoints: those of the database user, the database designer, and the database administrator. It teaches the use of a database management system (DBMS) by treating it as a black box, focusing only on its functionality and its interfaces. Topics include: introduction to database systems, relational database systems, database design methodology, SQL and interfaces, database application development, concept of transactions, ODBC, JDBC, database tuning, database Administration, and advanced topics (distributed databases, data warehouses, data mining). Prerequisite: CMPS 270.

CMPS 310 Programming Languages (4 crs.)
A comparative study of the design and implementation of advanced programming language features in imperative, scripting, object-oriented, functional, logic, and visual languages. Formal methods for syntactic and semantic description of imperative programming languages are examined. Topics include statement types, data types, variable binding, method binding, and backtracking mechanisms. Prerequisite: CMPS 160.

CMPS 315 Advanced Programming in C++ (3 crs.)
This course introduces advanced programming techniques in C++. It is structured in such a way that a good theoretical knowledge and practical experiences are gained in the advanced concepts and features of object oriented programming. The course covers: An introduction to classes and objects, class functions and constructors, overloaded constructors, public and private access to functions, operators, use of conditional and iterative control statements, accessing arrays subscripts and pointers, inheritance, inherited and overridden functions, use of the stream library functions to access files and use of user defined classes to write object-oriented programs. Prerequisite: CMPS 160.

CMPS 320 Introduction to Computer Security (3 crs.)
An introduction to cryptography and the security of networks and databases. Topics include classical encryption; modern encryption techniques; public key encryption; elliptic curve cryptography; message authentication, message digest functions; and methods for relational database security, including access control. Prerequisite: MATH 370.

CMPS 330 Computer Architecture (3 crs.)
This course provides a comprehensive understanding of the structure and function of a computer system from architectural and integration viewpoint. It
focuses on two broad architectural perspectives: the internal perspective, which entails the architecture and design integration of the data path logic, control path logic, memory and I/O; and the external perspective, which provides consumer views and system selection aspects. Examples of real machines are used in the course. **Prerequisite: CMPS 215.**

CMPS 340 Advanced Programming in Java (3 crs.)
This course provides the basic theoretical understanding and the necessary practical experience of advanced Java programming. The topics include: - Types, operators and expressions, Control flow, IO functions and program structure, Object Oriented software design techniques, Features of the Java language and commonly used application systems programming, Testing and debugging techniques, Analysis, design and systems software lifecycles. **Prerequisite: CMPS 160.**

CMPS 350 Theory of Computation (3 crs.)
Introduction to formal languages and computational models. Topics covered include finite automata, pushdown automata, Turing machines, undesirability, recursive and recursively enumerable functions. Some applications to computer science are also discussed, such as compiler design and text processing. **Prerequisites: MATH 370 and CMPS 110.**

CMPS 360 Parallel Computing (3 crs.)
Introducing the essentials of parallel computers and the methodology of programming using such computers. The basic architecture of parallel computers including shared memory, message passing, meshes, and hyper-cubes are introduced. Topics include: the basic techniques of parallel computations, portioning and divide-conquer, and the basic algorithms such as searching algorithms, numerical algorithms, etc. **Prerequisites: CMPS 215 and CMPS 240.**

CMPS 370 Database Management Systems (3 crs.)
The objective of this course is to introduce students to fundamentals of building a relational database management system. The course focuses on the database engine core technology by studying topics such as storage management (data layout, disk-based data structures), indexing, query processing algorithms, query optimization, transactional concurrency control, logging and recovery. **Prerequisite: CMPS 270.**

CMPS 400 Human-Computer Interaction (3 crs.)
Examining formal methods for facilitating human-computer communication. Topics include information processing characteristics important to facilitate human-computer interaction, and formal models of human-computer interaction. Other topics include dialogue techniques, response times and display rates, information presentation, interaction devices, computer training, help systems, information search and visualization, and hypermedia. **Prerequisite: CMPS 255.**

CMPS 405 Artificial Intelligence (3 crs.)
An introduction to the automation of intelligent capabilities, including knowledge representation and reasoning (search and logical inference), interpreting, behavior modeling and learning. Expert systems, knowledge acquisition, and machine learning will also be stressed. Programming projects will be given, some of which will be in Prolog. Prerequisites: CMPS 240. Prerequisites: Instructor approval.

CMPS 410 Software Engineering (4 crs.)
Examination of the overall process of software development. Students will learn the principles of software requirements, analysis, implementation, testing, and maintenance. Other topics include professional ethics, practices, risks and liabilities. A brief survey of available tools will be presented covering analysis, planning, design and structure charts, system and information flow diagrams, testing and quality control. Students complete a project by implementing a significant software system in teamwork. Prerequisites: CMPS 200.

CMPS 420 Internet Programming and Web Design (3 crs.)
This course provides a hands-on approach in understanding how medium-sized interactive client/server Web applications are built using different types of integrated Web technologies. Students will learn how to implement a database-driven website, and gain understanding of the relevant technologies involved in each tier of the web architectural model. Topics include the accessibility of Web agents and end-users, Web caching and proxy techniques, and security issues and strategies of Web-based applications. Prerequisites: CMPS 250 and CMPS 270.

CMPS 425 Computer Graphics (3 crs.)
This course introduces the fundamentals of computer graphics with emphasis on 2-D graphics. An application-based approach is used to introduce various topics such as: graphics output primitives, their attributes, colors, transformations, anti-aliasing, texture mapping, and curves and surfaces. Other topics include: 2D graphics algorithms, essentials of user interface and window management systems, and graphics hardware. Programming using OpenGL is an essential part of this course. Prerequisites: CMPS 160.

CMPS 430 Compiler Construction (3 crs.)
Examining of how compilers work. Topics include a simple compiler, context-free grammars, lexical analysis, top-down parsing, bottom-up parsing, semantic analysis, and code generation. Programming projects are an essential part of this course. Prerequisites: CMPS 215 and CMPS 310.

CMPS 440 Selected Topics in Computer Science (1-3 crs.)
This course requires the presentation of a selected topic, according to the interests of the instructors and/or students. Topics will be chosen from state-of-the-art innovations in software and computer information systems. Prerequisite: Instructor Approval.

CMPS 455 Digital Media (3 crs.)
This course covers technical aspects of digital media. Topics include capturing, storage, digital representation, compression, and generation of digital media. The forms of media to be covered include text, images, 2D animation, video, sound, and 3D graphics and animation. **Prerequisite: CMPS 425.**

CMPS 465 Scientific Visualization
(3 crs.)
Introducing various techniques in scientific data visualization with an object oriented approach. Topics include basic data representation, visualization schemes for scalar, vector and other types of data, basic algorithms for generation of ISO-surface and volume visualization. Applications include 3D medical imaging, financial applications, modeling, algorithms visualization and other. **Prerequisite: CMPS 425.**

CMPS 475 Advanced Computer Graphics
(3 crs.)
Introducing the basic concepts of 3D computer graphics by adopting an application based approach. Topics include 3D object representations and manipulations; 3D transformation and viewing; hidden-surface and hidden-line removal; shading models; rendering; texture mapping; ray-tracing; animation techniques. Programming using OpenGL is an essential part of this course. **Prerequisite: CMPS 425.**

CMPS 485 Computer-Aided Geometric Design
(3 crs.)
An overview of the use of a computer in modeling 2- and 3-D objects. It discusses the representation of free-form curves and surfaces with emphasis on Bezier and Bspline. Other topics include: approximation and interpolation, visual smoothness, geometric continuity, parameterization and subdivision surfaces. Programming projects using OpenGL will be given with various applications including animation. **Prerequisite: CMPS 425.**

CMPS 490 Final Project
(4 crs.)
This course requires the implementation of a term project that reflects and demonstrates knowledge gained on the computer science undergraduate program. The final project will be a group project (a group of 2 or 3 students depending on the nature of the project). **Prerequisite: Fourth year candidate.**
DEPARTMENT OF EDUCATION

Personnel

Department Chairperson: Al Maashani, Ahmed.
Assistant Professors: Ayoub, Abdulaziz; El Sayed, Abdelkader; Al Maashani, Ahmed.
Lecturer: Bait Ali Suliman, Moosa; Al Mashikhi, Khalid.
Secretary: Al Maashani, Maryam.

Mission

The Education Department provides its students with the knowledge and skills that qualify them to be successful teachers and educational administrators in their fields of specialization. It encourages them to conduct research in their fields, learn independently, and develop themselves as students, teachers and administrators. Moreover, it encourages them to think critically and get involved in their society’s activities to participate actively in its development and progress.

Objectives

The objectives of the Department of Education are:

- Providing students with quality education and content pedagogy that will prepare them to become productive teachers in schools and responsible professionals and citizens;
- Preparing caring and reflective teachers who are critical thinkers, problem-solvers, and can easily adapt to the changes in the relevant fields of knowledge;
- Preparing teachers who respect their cultural heritage, understand the main issues of modern society, and appreciate the role that both play in the lives of students;
- Providing students with solid liberal education, training and appropriate learning skills and values; and
- Promoting life-long independent learning.

Learning Outcomes

By the end of their studies, students at the Education Department will be able to:

- Teach successfully in public and private schools
- Carry out different activities in their schools.
- Participate in their society’s development and activities.
- Participate in the administration of their schools and other activities related to the MOE.
• Think critically in their life and participate in the development of their schools.
• Carry out research that benefits their schools and society.
• Be aware of up-to-date pedagogy that qualifies them to be productive teachers.
• Continue to develop themselves during their life.
• Prepare them to become good and productive citizens in Oman.

Degrees Offered

• Bachelor of Education (B. Ed.)
• Master of Education in Curriculum and Instruction: Teaching English Language
• Master of Educational Administration
• Master of Education in Counseling

Specializations

The following specializations are currently available for the B. Ed.:

• Teaching of English Language;
• Teaching of Mathematics;
• Teaching of Science; and
• Teaching of Information Technology in cycles 1 and 2 of Basic Education.

Career Opportunities

Career opportunities are available for all Education department graduates in the education sector. Our graduates can work immediately after graduate teaching mathematics, science, IT, and English language teachers.

Admission Criteria

Admission to the B. Ed. program follows the instructions of the Ministry of Higher Education which require having a minimum average of 75% in the General Education Certificate for all specializations and a minimum grade of 80% in Arabic, English, Mathematics, or Science for those who plan to specialize in teaching any of those subjects. In addition, students should take placement tests or equivalent to determine their proficiency in English, Mathematics, and Information Technology skills.

Bachelor of Education (B.Ed.) Program

This is a four-year program consisting of 122-124 credit hours designed to provide theoretical knowledge and practical training to prepare students for teaching careers in the first two cycles of the Omani educational system (grades 1-10). The program offers a wide range of courses in the subject matter specialization, psychology of learning, teaching methodology, optimizing
meaningful learning by students, using information and communication
technologies in education, and practicum in actual school settings. In addition,
the program exposes students to a well-rounded general knowledge about
academic writing in Arabic Language, basic mathematics and sciences, Omani
society, the arts, and extensive training in English language as University
requirements.

Graduation Requirements

To graduate from Education Department, students must satisfactorily complete
120 credit hours of course work from the courses that are described in the
Program of Study with an overall minimum average of 65 percent, and a
cumulative average of 70 percent in the major courses.

University Requirements

This set includes the following 10 course encompassing 30 Credit Hours:

- ARAB 101: Academic Writing in Arabic
- CMPS 100A: Introduction to Technical Computing for the Arts, Or
- CMPS 100B: Introduction to Technical Computing for the Sciences
- ENGL 101: Basic Academic English I
- ENGL 102: Basic Academic English II
- ENGL 203: Advanced Academic English I
- ENGL 204: Advanced Academic English II
- MATH 103: Mathematics for Social Sciences I, except the Math Education
 should take MATH 199
- SOCS 100: World Civilizations
- SOCS 102: Omani Society
- SOCS 200: World Civilizations II

College Requirements

This set includes the following four course encompassing 12 Credit Hours:

- One course in physical/natural sciences electives (3 Cr. hrs.)
- One course in humanities/social sciences electives (3 Cr. hrs.)
- Two courses in major specialization electives (6 Cr. hrs.)

Program Requirements

Required Education Courses: The following set of ten Education courses
encompassing 30 credit hours is required in all Specializations:

- EDUC 120: Learning and Child Development
- EDUC 150: Introduction to Foundations of Education
- EDUC 300: Curriculum Development and Analysis
- EDUC 303: School Observation and Classroom Observation
- EDUC 320: Instructional Methods and Strategies
- EDUC 360: Educational Systems in Oman and the GCC Countries
- EDUC 365: Information and Communication Technologies (ICT) in Education
- EDUC 420: Introduction to Research Methodology in Education
- EDUC 490: Senior Project
- PSYC 150: Introduction to Psychology

Elective Education Courses: English Language, Sciences, and Information Technology specializations are required to choose two Education courses encompassing 6 credit hours, and Math specialization is required to choose one, 3 Credit hours course from the list below.

- EDUC 200: Introduction to Guidance and Counseling
- EDUC 205: Introduction to Special Education
- EDUC 210: Children’s Literature
- EDUC 250: Education in Islam
- EDUC 260: Environmental Education
- EDUC 305: Approaches to Integration in Education
- EDUC 310: Visual Arts Education
- EDUC 355: Behavior Modification
- EDUC 370: Learning Difficulties
- EDUC 400: Professional Development in Education
- EDUC 425: Foundations of Health Education
- EDUC 430: Educational Administration
- EDUC 460: Senior Seminar: Issues in Education

Specialization Requirements

I. Teaching English Language

This specialization consists of 13 Courses encompassing 42 Credit hrs distributed as follows.

Required Specialized Education Courses

This set includes four courses encompassing 15 Credit Hours chosen from the following list:

- EDUC 350A: Methods of Teaching English as a Second Language at the Elementary and Intermediate Levels (Grades 1-10) I
- EDUC 410A: Methods of Teaching English as a Second Language at the Elementary and Intermediate Levels (Grades 1-10) II
- EDUC 440A: Methods of Assessing Learning of English as a Second Language at the Elementary and Intermediate Levels (Grades 1-10)
- EDUC 485A: Practicum in Teaching English as a Second Language at the Elementary and Intermediate Levels (Grades 1-10)

Required Subject Courses
This set includes eight courses encompassing 24 Credit Hours chosen from the following list

- ENGL 120: Understanding English Grammar
- ENGL 160: Understanding Literature
- ENGL 210: Introduction to Linguistics
- ENGL 215: The Sounds of English
- ENGL 230: Prose Fiction in English
- ENGL 270: Situational English
- ENGL 285: Writing Workshop
- ENGL 290: Poetry

Elective Subject Courses

This set includes three courses encompassing 9 Credit Hours chosen from the following list

- ENGL 240: Introduction to Language
- ENGL 255: The Psychology of Language
- ENGL 260: Shakespeare
- ENGL 265: Culture in the classroom
- ENGL 275: Rhetoric
- ENGL 280: Business English
- ENGL 315: The Novel
- ENGL 345: Morphology
- ENGL 350: Advanced Writing for Humanities
- ENGL 355: Language in Society
- ENGL 440: Advanced Academic Writing
- TRAN 150: Introduction to Translation
- TRAN 220: Translation Theory
- TRAN 250: Contrastive Analysis
- TRAN 260: Translation Techniques

II. Teaching Mathematics

This specialization consists of 14 Courses encompassing 47 Credit hrs distributed as follows.

Required Specialized Education Courses

This set includes four courses encompassing 12 Credit Hours chosen from the following list

- EDUC 350B: Methods of Teaching Mathematics at the Elementary and Intermediate Levels (Grades 1-10) I
- EDUC 410B: Methods of Teaching Mathematics at the Elementary and Intermediate Levels (Grades 1-10) II
- EDUC 440B: Methods of Assessing Learning of Mathematics at the Elementary and Intermediate Levels (Grades 1-10)
EDUC 485B: Practicum in Teaching Mathematics at the Elementary and Intermediate Levels (Grades 1-10)

Required Subject Courses
This set includes ten courses encompassing 32 Credit Hours chosen from the following list
- CHEM 130: Chemical Principles I
- CHEM 130L: Introductory Chemistry Laboratory
- MATH 200: Calculus II
- MATH 205: Calculus III
- MATH 210: Differential Equations
- MATH 240: Mathematics Computer Applications I
- MATH 250: Probability and Statistics
- MATH 255: Statistical Inference
- MATH 260: Numerical Analysis
- MATH 280: Mathematics Computer Applications II
- PHYS 170: Fundamentals of Physics I
- PHYS 170L: Introductory Physics Laboratory

Elective Subject Courses
This set includes two courses encompassing 6 Credit Hours chosen from the following list
- MATH 120: Geometry and Trigonometry
- MATH 204: Mathematics for Social Sciences II
- MATH 215: Elementary Statistics for the Social Sciences
- MATH 305: Advanced Calculus
- MATH 320: Linear Algebra I
- MATH 370: Discrete Mathematics
- MATH 390: Differential Equation II

III. Teaching Science
This specialization consists of 12 Courses encompassing 43 Credit hrs distributed as follows.

Required Specialized Education Courses
This includes four courses encompassing 15 Credit Hours chosen from the following list
- EDUC 350C: Methods of Teaching Science at the Elementary and Intermediate Levels (Grades 1-10) I
- EDUC 410C: Methods of Teaching Science at the Elementary and Intermediate Levels (Grades 1-10) II
- EDUC 440C: Methods of Assessing Learning of Science at the Elementary and Intermediate Level (Grades 1-10)
• EDUC 485C: Practicum in Teaching Science at the Intermediate Levels (Grades 1-10)

Required Subject Courses

This includes seven courses encompassing 25 Credit Hours chosen from the following list

• BIOL 120: Introductory Biology
• BIOL 120L: Introductory Biology Lab
• CHEM 130: Chemical Principles I
• CHEM 130L: Introductory Chemistry Laboratory
• CHEM 170: Chemical Principles II
• MATH 200: Calculus II
• PHYS 170: Fundamentals of Physics I
• PHYS 170L: Introductory Physics Laboratory
• PHYS 210: Fundamentals of Physics II
• PHYS 210L: Physics Lab II

Elective Subject Courses

This includes three courses encompassing 9 Credit Hours chosen from the following list

• CHEM 260: Analytical Chemistry
• CHEM 280: Environmental Chemistry
• MATH 205: Calculus III
• MATH 210: Differential Equations
• MATH 215: Elementary Statistics for Social Sciences
• MATH 240: Mathematics Computer Applications I

IV: Teaching Information Technology

This specialization consists of 13 Courses encompassing 42 Credit hrs distributed as follows.

Required Specialized Education Courses

This includes four courses encompassing 15 Credit Hours chosen from the following list:

• EDUC 350D: Methods of Teaching Informatics, Elementary and Intermediate Levels (Grades 1-10) I
• EDUC 410D: Methods of Teaching Informatics, Elementary and Intermediate Levels (Grades 1-10) II
• EDUC 440D: Methods of Assessing Learning of Informatics, Elementary and Intermediate Levels (Grades 1-10)
• EDUC 485D: Practicum in Teaching Informatics Elementary and Intermediate Levels (Grades 1-10)
Required Subject Courses
This includes nine courses encompassing 27 Credit Hours chosen from the following list

- CMPS 110: Introduction to Programming
- CMPS 160: Data Abstraction
- CMPS 180: Digital System Design
- CMPS 215: Computer Organization with Assembly Language
- CMPS 240: Analysis of Algorithms
- CMPS 250: Computer Networks
- CMPS 260: Operating Systems
- CMPS 270: Database Systems
- MATH 370: Discrete Mathematics

Elective Subject Courses
This includes two courses encompassing 6 Credit Hours chosen from the following list

- CMPS 200: Analysis and Design of Information Systems
- CMPS 205: Introduction to Multimedia Concepts
- CMPS 210: Digital Image and Video Processing
- CMPS 225: Introduction to Data Communications
- CMPS 230: Introduction to System Programming
- CMPS 235: Numerical Computing
- CMPS 265: Introduction to Microprocessors
- CMPS 280: Introduction to Internet Programming & Web Design
- CMPS 290: Introduction to Database Management
Study Plan - Teaching English Language

Year I

Semester 1 (Fall)
15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 100A</td>
<td>Introduction to Technical Computing for the Arts</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 120</td>
<td>Learning and Child Development</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 120</td>
<td>Understanding English Grammar</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2 (Spring)
15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 150</td>
<td>Introduction to Foundations of Education</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 160</td>
<td>Understanding Literature</td>
<td>3</td>
</tr>
<tr>
<td>MATH 103</td>
<td>Mathematics for Social Sciences I</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 150</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Year II

Semester 3 (Fall)
15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Introduction to Linguistics</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 215</td>
<td>The Sounds of English</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 230</td>
<td>Prose Fiction in English</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 100</td>
<td>World Civilizations I</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 4 (Spring)
15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 270</td>
<td>Situational English</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 285</td>
<td>Writing Workshop</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 290</td>
<td>Poetry</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
<td>3</td>
</tr>
</tbody>
</table>
Year III

Semester 5 (Fall) 15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 300</td>
<td>Curriculum Development and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 303</td>
<td>School Visit and Classroom Observation</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 320</td>
<td>Instructional Methods and Strategies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>English Major Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Physical/Natural Sciences Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 6 (Spring) 15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 360</td>
<td>Educational Systems in Oman and the GCC Countries</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 365</td>
<td>Information and Communication Technologies (ICT) in Education</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Methods of Teaching in the Area of Specialization I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Education Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>English Major Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Year IV

Semester 7 (Fall) 18 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 420</td>
<td>Introduction to Research Methodology in Education</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilizations II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Methods of Assessing Learning of the Area of Specialization</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Methods of Teaching in the Area of Specialization II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>English Major Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities and Social Science Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 8 (Spring) 12 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 490</td>
<td>Senior Project</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Practicum in the Area of Specialization</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Major Education Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Completion of the B. Ed. In Education - Total Credits 120
Study Plan - Teaching Mathematics

Year I

Semester 1 (Fall)
15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 100B</td>
<td>Introduction to Technical Computing for the Sciences</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 120</td>
<td>Learning and Child Development</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 199</td>
<td>Calculus I</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2 (Spring)
16 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 130</td>
<td>Chemical Principles I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 130L</td>
<td>Introductory Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EDUC 150</td>
<td>Introduction to Foundations of Education</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 200</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 150</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Year II

Semester 3 (Fall)
16 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 205</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>MATH 210</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 170</td>
<td>Fundamentals of Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 170L</td>
<td>Introductory Physics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MATH 240</td>
<td>Mathematics Computer Applications I</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 4 (Spring)
15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 250</td>
<td>Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 255</td>
<td>Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>MATH 260</td>
<td>Numerical Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Oman Society</td>
<td>3</td>
</tr>
</tbody>
</table>
Year III
Semester 5 (Fall) 15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 300</td>
<td>Curriculum Development and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 303</td>
<td>School Visit and Classroom Observation</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 320</td>
<td>Instructional Methods and Strategies</td>
<td>3</td>
</tr>
<tr>
<td>MATH 280</td>
<td>Mathematics Computer Applications II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mathematics Major Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 6 (Spring) 18 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 420</td>
<td>Introduction to Research Methodology in Education</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilizations II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Methods of Assessing Learning of the Area of Specialization</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Methods of Teaching in the Area of Specialization II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Physical/Natural Sciences Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Year IV
Semester 7 (Fall) 18 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 420</td>
<td>Introduction to Research Methodology in Education</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilizations II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Methods of Assessing Learning of the Area of Specialization</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Methods of Teaching in the Area of Specialization II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>English Major Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities and Social Science Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 8 (Spring) 12 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 490</td>
<td>Senior Project</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Practicum in the Area of Specialization</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Major Education Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Completion of the B.Ed. in Education - Total Credits 122
Study Plan - Teaching Science

Year I
Semester 1 (Fall)
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 100B</td>
<td>Introduction to Technical Computing for the Sciences</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 120</td>
<td>Learning and Child Development</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 103</td>
<td>Mathematics for Social Sciences I</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2 (Spring)
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 130</td>
<td>Chemical Principles I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 130L</td>
<td>Introductory Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EDUC 150</td>
<td>Introduction to Foundations of Education</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 200</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 150</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Year II
Semester 3 (Fall)
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 120</td>
<td>Introductory Biology with Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 120L</td>
<td>Introductory Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 170</td>
<td>Fundamentals of Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 170L</td>
<td>Introductory Physics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Oman Society</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 4 (Spring)
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 170</td>
<td>Chemical Principles II</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 210</td>
<td>Fundamentals of Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 210L</td>
<td>Physics Lab II</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Science Major Elective</td>
<td>3</td>
</tr>
<tr>
<td>Year III</td>
<td>Semester 5 (Fall)</td>
<td>15 Credits</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>EDUC 300</td>
<td>Curriculum Development and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 303</td>
<td>School Visit and Classroom Observation</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 320</td>
<td>Instructional Methods and Strategies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Science Major Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Science Major Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6 (Spring)</th>
<th>18 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>EDUC 360</td>
<td>Educational Systems in Oman and the GCC Countries</td>
</tr>
<tr>
<td>EDUC 365</td>
<td>Information and Communication Technologies</td>
</tr>
<tr>
<td>SOCS 100</td>
<td>World Civilizations I</td>
</tr>
<tr>
<td></td>
<td>Methods of Teaching in the Area of Specialization</td>
</tr>
<tr>
<td></td>
<td>Physical/Natural Sciences Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year IV</th>
<th>Semester 7 (Fall)</th>
<th>18 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>EDUC 420</td>
<td>Introduction of Research Methodology in Education</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilizations II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Methods of Assessing Learning of the Area of Specialization</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Methods of Teaching in the Area of Specialization</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Education Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8 (Spring)</th>
<th>12 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>EDUC 490</td>
<td>Senior Project</td>
</tr>
<tr>
<td></td>
<td>Practicum in the Area of Specialization</td>
</tr>
<tr>
<td></td>
<td>Major Education Elective</td>
</tr>
</tbody>
</table>

Completion of the B.Ed. in Science - Total Credits 121
Study Plan: Teaching Information Technology

Year I

Semester 1 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 120</td>
<td>Learning and Child Development</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 100B</td>
<td>Introduction to Technical Computing for the Sciences</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 110</td>
<td>Introduction to Programming</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 103</td>
<td>Mathematics for Social Sciences I</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2 (Spring)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 150</td>
<td>Introduction to Foundations of Education</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 160</td>
<td>Data Abstraction</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 180</td>
<td>Digital System Design</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 370</td>
<td>Discrete Mathematics</td>
<td>3</td>
</tr>
</tbody>
</table>

Year II

Semester 3 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 120</td>
<td>Introductory Biology with Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 120L</td>
<td>Introductory Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 170</td>
<td>Fundamentals of Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 170L</td>
<td>Introductory Physics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Oman Society</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 4 (Spring)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 250</td>
<td>Computer Networks</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 260</td>
<td>Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 270</td>
<td>Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
<td>3</td>
</tr>
</tbody>
</table>
Year III

Semester 5 (Fall)
15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 300</td>
<td>Curriculum Development and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 303</td>
<td>School Visit and Classroom Observation</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 320</td>
<td>Instructional Methods and Strategies</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Oman Society</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Physical/Natural Sciences Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 6 (Spring)
15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 300</td>
<td>Curriculum Development and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 303</td>
<td>School Visit and Classroom Observation</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 320</td>
<td>Instructional Methods and Strategies</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Oman Society</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Physical/Natural Sciences Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Year IV

Semester 7 (Fall)
18 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 420</td>
<td>Introduction to Research Methodology in Education</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilizations II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Methods of Assessing Learning of the Area of</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Specialization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methods of Teaching in the Area of Specialization I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Education Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Computer Science Major Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 8 (Spring)
12 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 490</td>
<td>Senior Project</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Practicum in the Area of Specialization</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Major Education Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Completion of the B.Ed. in Information Technology - **Total Credits 120**
Course Descriptions

EDUC 120 Learning and Child Development (3 credits)
Introduction to theories of instruction, intelligence, child development, learning and behavior management. Implications of these theories for classroom teaching.

EDUC 150 Introduction to Foundations of Education (3 credits)
Brief history of major factors that influenced the development of modern education. The philosophical, psychological, and social backgrounds of education with focus on the Arabic culture and the goals of the educational systems in the Sultanate of Oman and the GCC countries.

EDUC 200 Introduction to Guidance and Counseling (3 credits)
An introduction to school guidance and counseling. Emphasis is on the role of guidance counselors in school and community settings. Prerequisite: EDUC 120.

EDUC 205 Introduction to Special Education (3 credits)
An introduction to the various types of exceptionality. Educational characteristics of children with learning disabilities, emotional disturbance, mental retardation, speech, visual, and hearing impairment, and giftedness. Prerequisite: EDUC 120.

EDUC 210 Children’s Literature (3 credits)
Survey of the classics and contemporary children’s literature of various genres. Topics include child development in relation to children’s literature, poetry, fairy tales, epics, myths and legends, fantasy, fiction, nursery rhymes, ABC/counting and picture books. Using children’s literature as an effective means to encourage reading enjoyment and self expression is particularly stressed.

EDUC 250 Education in Islam (3 credits)
This course examines the approach of Islam to education and the history of educational systems in Islamic societies.

EDUC 260 Environmental Education (3 credits)
The basic concepts of the environment from economical, cultural, and religious point of views. The need to preserve the environment locally and internationally to secure continuity of the human race. The local environmental problems and suggested solutions. The role of schools and educational systems to spread environmental awareness and improve environment friendly behaviors.

EDUC 300 Curriculum Development and Analysis (3 credits)
Principles of curriculum development and techniques to analyze and select curricula that is appropriate to stated goals and objectives. Focus is on the Omani curriculum at its various stages. *Prerequisite: EDUC 320.*

EDUC 303 School Visit and Classroom Observation (3 credits)

Visiting schools and getting acquainted with various aspects of school organization, structure, administration, teachers’ duties, and the relationship between teachers and administrators. Students will be distributed in groups according to their area of specialization. *Prerequisite: One Methods Course.*

EDUC 305 Approaches to Integration in Education (3 credits)

Approaches to the integrated curriculum and construction of integrated thematic units. Building, analyzing, and critiquing models of integration are emphasized. Developing interdisciplinary units of learning; involving parents and community; communicating effectively with children within their unique stages of development.

EDUC 310 Visual Arts Education (3 credits)

Teaching visual art in the elementary school with focus on the techniques of teaching painting, drawing, paste modeling, and constructing visual products out of various media. Focus is on leading children to develop their creative thinking. The course includes observation and practice in actual classrooms.

EDUC 320 Instructional Methods and Strategies (3 credits)

Exploration of known strategies and techniques of teaching, and learning. Essential teaching skills with focus on developing thinking abilities. Discussing the most commonly known theories and models such as Social Interaction Model, the Inductive Model, the Problem based Learning, Cooperative Learning, and Direct-Instruction Model. *Prerequisite: EDUC 150.*

EDUC 350A Methods of Teaching English as a Second Language at the Elementary and Intermediate Levels (Grades 1-10) I (3 credits), 2.2

Theoretical background and supervised teaching of English as a foreign language at the elementary and intermediate levels. Focus is on developing competencies in material development, instructional planning, classroom management, and methodology of teaching English as a foreign language in the elementary school. The course includes observation and application of these competencies in field settings. Micro teaching is an integral component. *Prerequisite or co-requisite: EDUC 320.*

EDUC 350B Methods of Teaching Mathematics at the Elementary and Intermediate Levels (Grades 1-10) I (3 credits), 2.2
Theoretical background and supervised teaching of mathematics in the elementary school. Focus is on developing competencies in instructional material development, instructional planning, classroom management, and methodology of teaching mathematics. The course includes observation and application of these competencies in field settings. Microteaching is an integral component.

Prerequisite or co-requisite: EDUC 320.

EDUC 350C
Methods of Teaching Science at the Elementary and Intermediate Levels (Grades 1-10)
Theoretical background and supervised teaching of science at the intermediate level. Focus is on developing competencies in material development, instructional planning, classroom management, and methodology of teaching science. The course includes observation and application of these competencies in field settings. Microteaching is an integral component.

Prerequisite or co-requisite: EDUC 320.

EDUC 350D
Methods of Teaching Information Technology at the Elementary and Intermediate Levels (Grades 1-10)
Theoretical background and supervised teaching of science at the intermediate level. Focus is on developing competencies in material development, instructional planning, classroom management, and methodology of teaching science. The course includes observation and application of these competencies in field settings. Microteaching is an integral component.

Prerequisite or co-requisite: EDUC 320.

EDUC 355
Behavior Modification
The meaning and psychological concepts that are associated with behavior. The distinction between normal and abnormal behaviors. The theoretical framework of behavior modifications in light of analytical and cognitive models with focus on the most common behavioral problems such as shyness, aggression, drug abuse, adolescent delinquency, and the role of family and school in this regard.

EDUC 360
Educational Systems in Oman and the GCC Countries
An in-depth analysis of the educational systems in Oman and the GCC, its components and philosophy with special emphasis on input quality standards and the process of output transmission to the markets equipped with the necessary skills to complete at regional and international levels. Case studies and applied examples are used. The course may be offered in Arabic.

EDUC 365
Information and Communication Technologies (ICT) in Education
An overview of how to use technology in the classroom. Focuses on teaching and managing classroom activities using Information and Communication Technologies.
Technologies (ICT), evaluating the effectiveness of educational software, integrating the Internet in teaching, and developing basic educational applications such as digital presentations and educational websites.

EDUC 370 Learning Difficulties (3 credits)
The basic concept and the foundations of classifying learning difficulties from biological and cognitive points of views. Focus is on the most common learning difficulties in the classroom such as speech irregularities and difficulties in writing and self expression.

EDUC 400 Professional Development in Education (3 credits)
Models of professional development in educational settings. Topics include theories of professional development in education, continuous improvement in teaching, expanded leadership roles for all teachers, providing peer assistance, and supervision for professional growth. Designing and evaluating a professional development plan.

EDUC 410A Methods of Teaching English as Second Language at the Elementary and Intermediate Levels (Grades 1-10) II (3 credits), 2.2
A further development of the methods of teaching English as a second language at the elementary and intermediate levels that were studied in EDUC 350A. Focus is on curriculum analysis and the selection and evaluation of relevant textbooks and other support materials including computer software, and audio-visual materials. *Prerequisite: EDUC 350A.*

EDUC 410B Methods of Teaching Mathematics at the Elementary and Intermediate Levels (Grades 1-10) II (3 credits), 2.2
A further development of the methods of teaching mathematics at the elementary and intermediate levels that were studied in EDUC 350B. Focus is on curriculum analysis and the selection and evaluation of relevant textbooks and other support materials including computer software, and audio-visual materials. *Prerequisite: EDUC 350B.*

EDUC 410C Methods of Teaching Science at the Elementary and Intermediate Levels (Grades 1-10) II (3 credits), 2.2
A further development of the methods of teaching science at the elementary and intermediate levels that were studied in EDUC 350C. Focus is on curriculum analysis and the selection and evaluation of relevant textbooks and other support materials including computer software, and audio-visual materials. *Prerequisite: EDUC 350C.*

EDUC 410D Methods of Teaching Information Technology at the Elementary and Intermediate Levels (Grades 1-10) II (3 credits), 2.2
A further development of the methods of teaching Information Technology at the elementary and intermediate levels that were studied in EDUC 350C. Focus is on curriculum analysis and the selection and evaluation of relevant textbooks and other support materials including computer software, and audio-visual materials. Prerequisite: EDUC 350D.

EDUC 420 Introduction to Research Methodology in (3 credits) Education
The importance of research in education. The basic qualitative and quantitative research methods that are suitable to education. Classroom-based research (Action Research) and its importance in improving classroom practices. The basic data collection techniques. Data types and basic data analysis techniques including frequency distributions, cross-tabulations, correlation, and hypothesis testing.

EDUC 425 Foundations of Health Education (3 credits)
The foundation for improving health through modification of daily habits. Analysis of nutrition, exercise, and environmental health is emphasized. The characteristics of a healthy environment and health curriculum in schools.

EDUC 430 Educational Administration and Classroom Management (3 credits)
The school structure and its relationship with central educational administration. Educational supervision and leadership with focus on the Omani environment in light of some international experiences. Classroom management and teacher relationship with the school administration.

EDUC 440A Methods of Assessing Learning of English as a Second Language at the Elementary and Intermediate Levels (Grades 1-10) (3 credits), 2.2
Principles and procedures of assessment of learning English as a second language at the elementary and intermediate levels. Focus is on types of test items such as multiple choice, fill-in the blank, true and false, short answers, and essays in norm- and criterion referenced assessment; standardized tests and how to construct and administer tests. In addition, the course covers observation techniques, performance measures and alignment of assessment and instruction along with related current issues and controversies. Prerequisite: EDUC 320.

EDUC 440B Methods of Assessing Learning of Mathematics at the Elementary and Intermediate Levels (Grades 1-10) (3 credits), 2.2
Principles and procedures of assessment of learning mathematics at the intermediate level. Focus is on types of test items such as multiple choice, fill-in the blank, true and false, short answers, and essays in norm- and criterion-referenced assessment; standardized tests and how to construct and administer tests. In addition, the course covers observation techniques, performance
measures and alignment of assessment and instruction along with related current issues and controversies. Prerequisite: EDUC 320.

EDUC 440C Methods of Assessing Learning of Science at the Elementary and Intermediate Levels (Grades 1-10) Principles and procedures of assessment of learning science at the intermediate level. Focus is on types of test items such as multiple choice, fill-in the blank, true and false, short answers, and essays in norm- and criterion-referenced assessment; standardized tests and how to construct and administer tests. In addition, the course covers observation techniques, performance measures and alignment of assessment and instruction along with related current issues and controversies. Prerequisite: EDUC 320.

EDUC 440D Methods of Assessing Learning of Information Technology at the Elementary and Intermediate Levels (Grades 1-10) Principles and procedures of assessment of learning Information Technology at the elementary and intermediate levels. Focus is on types of test items such as multiple choice, fill-in the blank, true and false, short answers, and essays in norm- and criterion-referenced assessment; standardized tests and how to construct and administer tests. In addition, the course covers observation techniques, performance measures and alignment of assessment and instruction along with related current issues and controversies. Prerequisite: EDUC 320.

EDUC 460 Senior Seminar: Issues in Education (3 credits) A seminar intended for majors in elementary education focusing on one or more current issues in elementary education. Senior Standing.

EDUC 485A Practicum in Teaching English as at the Elementary and Intermediate Levels (Grades 1-10) Experience in classroom settings under the supervision of university instructors and cooperating school teachers. Prerequisite: EDUC 410A

EDUC 485B Practicum in Teaching Mathematics at the Elementary and Intermediate Levels (Grades 1-10) Experience in classroom settings under the supervision of university instructors and cooperating school teachers. Prerequisite: EDUC 410B

EDUC 485C Practicum in Teaching Science at the Elementary and Intermediate Levels (Grades 1-10)
Experience in classroom settings under the supervision of university instructors and cooperating school teachers. *Prerequisite: EDUC 410C*

EDUC 485D Practicum in Teaching Information (6 credits), Technology at the Elementary and Intermediate Levels (Grades 1-10)

Experience in classroom settings under the supervision of university instructors and cooperating school teachers. *Prerequisite: EDUC 410D*

EDUC 490 Senior Project (3 credits)

Methods and concepts of action research. Action research is presented as a reflective process used by practicing classroom teachers to identify and solve problems of importance in the classroom. The course includes an action research project. The course should be taken only in the spring semester of the fourth year.
DEPARTMENT OF LANGUAGES AND TRANSLATION

Personnel

Department Chairperson: Al Bainy, Ramez
Associate Professors: Al Abdullah, Mufeed; Al Saqqaf, Abdullah.
Assistant Professors: Al Bainy, Ramez; Risse, Marielle; Sharma, Amrendra; Thakur, Vijay Singh; El-Shafee, Ahmed; James Redgway, Antony.
Lecturers: Al Mashani, Salim; Amjad Ali, Mohamed Yusuff; Ridgway, Theresa Jane; Adil Zaidi, Syed Mohammed; Al Yafaei, Marwan; Jayaraman, Seetha; Aamer Saeed, Muhammad.
Instructor: Cass, Stephen.
Secretary: Zabanoot, Muna Suhail.

Objectives

The objectives of the Department of Languages and Translation are:

- Helping the students develop a high level of linguistic competence in English and Arabic through combining theoretical knowledge and extensive practice;
- Preparing students for careers that need the use of English language such as teaching, editing, writing, publishing, and public relations, or for pursuing their education in English language beyond the undergraduate level;
- Preparing students for careers in translation from Arabic into English and from English into Arabic, interpretation, teaching, editing, writing, publishing, and public relations, or for pursuing their education in translation beyond the undergraduate level;
- Raising students’ awareness regarding the importance of language structure and familiarizing them with the social, historical, and cultural contexts in which languages are used;
- Providing students with a solid liberal education, training, and appropriate learning skills;
- Preparing graduates to become responsible professionals and citizens with high ethical values; and
- Promoting life-long independent learning.
Learning Outcomes

1) Students will demonstrate the skills needed to participate in a conversation that builds knowledge independently as well as collaboratively:
 - Listening carefully and respectfully to others' viewpoints;
 - Articulating their own ideas and questions clearly; and
 - Situating their own ideas in relation to other voices and ideas.
2) Students will be able to prepare, organize, and deliver an engaging oral talk and presentation.
3) Students will be trained in presentation skills especially with the use of computers and multimedia.
4) Students will develop a teamwork habits and practices.
5) Students will become skilful, active, and critical readers,

Degrees Offered

- Diploma in English Language
- BA in Arabic Language
- BA in English Language
- BA in Translation

Career Opportunities

Graduates with a degree from Languages and Translation Department may find employment in many sectors, mainly English language teachers, translators, administrative and secretarial jobs, media, and so on.

Diploma Program in English Language

Mission

The mission of the Diploma program in the Dept. of Languages and Translation at Dhofar University is to graduate students who possess adequate knowledge, skills, and competencies to use the English language for general communicative, academic and job-related purposes.

Description and Objectives

The Diploma in English Language is a two-year study program of study designed to enable its holders to possess adequate knowledge, skills, and competencies to use the English language for general purposes. In addition to basic language-related courses, this diploma program offers practicum courses – all designed to help the students reach an adequate level of English language proficiency. Furthermore, the program follows a modern liberal arts approach by exposing the students to a sound knowledge of general sciences, the arts, a study of the
Omani culture, a mastery of general computing skills, and an efficient usage of the Arabic Language.

Graduation Requirements

To graduate with a Diploma in English Language, students must satisfactorily complete 60 credit hours of course work from the courses that are described in the Program of Study with an overall minimum average of 65 percent.

Program of Study

The course requirements for a Diploma in English Language are described below.

University Requirements

The general education requirements include the following 9 courses encompassing 27 Credit Hours:

- ARAB 101: Academic Writing in Arabic
- CMPS 100A: Introduction to Technical Computing for the Arts
- ENGL 101: Basic Academic English I
- ENGL 102: Basic Academic English II
- ENGL 203: Advanced Academic English I
- ENGL 204: Advanced Academic English II
- MATH 103: Mathematics for Social Sciences I
- SOCS 100: World Civilizations I
- SOCS 102: Oman Society

College Requirements

The college requirements include the following 2 courses encompassing 6 Credit Hours:

- One, 3-credit hours course in physical/natural sciences elective
- One, 3-credit hours course in humanities and social sciences elective

Program Requirements

The program requirements for the Diploma in English Language consists of 27 credit hours distributed as follows.

Major Core Courses: This set includes the following 8 courses encompassing 24 credit hours

- ENGL 120: Understanding English Grammar
- ENGL 160: Understanding Literature
- ENGL 210: Introduction to Linguistics
- ENGL 215: The Sounds of English
• ENGL 230: Prose and Fiction in English
• ENGL 270: Situational English
• ENGL 285: Writing Workshop
• ENGL 290: Poetry

Major Elective Courses: This set includes a 3-credit hour course chosen from the following set:

• ENGL 240: Introduction to Language
• ENGL 255: The Psychology of Language
• ENGL 260: Shakespeare
• ENGL 265: Culture in the Classroom
• ENGL 275: Rhetoric
• ENGL 280: Business English

Study Plan

<table>
<thead>
<tr>
<th>Year I</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1 (Fall)</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>CMPS 100A</td>
<td>Introduction to Technical Computing for the Arts</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
</tr>
<tr>
<td>ENGL 120</td>
<td>Understanding English Grammar</td>
</tr>
<tr>
<td>MATH 103</td>
<td>Mathematics for Social Sciences I</td>
</tr>
<tr>
<td>SOCS 100</td>
<td>World Civilizations I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 2 (Spring)</td>
<td>15 Credits</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 160</td>
<td>Understanding Literature</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Oman Society</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Physical/ Natural Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Year II</td>
<td></td>
<td>15 Credits</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>**Semester 3 (Fall)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Introduction to Linguistics</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 215</td>
<td>The Sounds of English</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 230</td>
<td>Prose and Fiction in English</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>**Semester 4 (Spring)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 270</td>
<td>Situational English</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 285</td>
<td>Writing Workshop</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 290</td>
<td>Poetry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td>Completion of the Diploma in English Language - Total Credits 60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bachelor of Arts (BA) Program in English Language

The BA in English language is a four-year, 120 Credit Hours program designed to enable its holders to develop advanced knowledge and proficiency of the English language skills and fair knowledge of English literature. The program focuses on pairing theoretical and practical work including practicum in real situations that require the use of English language. In addition, the program follows a modern liberal arts approach by exposing the students to a sound knowledge of general sciences, the arts, a study of the Omani culture, a mastery of general computing skills, and an efficient usage of Arabic Language.

Mission

The mission of the B.A. program in English in the Dept. of Languages and Translation at Dhofar University is to graduate students who can communicate clearly and intelligently in tasks and situations that require the use of the English language, understand written English of some complexity, and appreciate the cultural situation of language and elements of linguistics and literature, and be competent in 'higher order' reading skills and critical and lateral thinking skills.

Graduation Requirements

To graduate with a BA in English Language, students must satisfactorily complete 120 credit hours of course work from the courses that are described in the Program of Study with an overall minimum average of 65 percent, and a cumulative average of 70 percent in the major courses.

Program of Study

The courses required for a BA in English Language includes the following components.

University Requirements

The general requirements include the following set of 10 courses encompassing 30 credit hours:

- ARAB 101: Academic Writing in Arabic
- CMPS 100A: Introduction to Technical Computing for the Arts
- ENGL 101: Basic Academic English I
- ENGL 102: Basic Academic English II
- ENGL 203: Advanced Academic English I
- ENGL 204: Advanced Academic English II
- MATH 103: Mathematics for Social Sciences I
- SOCS 100: World Civilizations I
• SOCS 102: Omani Society
• SOCS 200: World Civilizations II

College Requirements

The college requirements include the following set of 4 courses encompassing 12 credit hours:

• One, 3-credit hours course in physical/natural sciences elective
• One, 3-credit hours course in humanities/social sciences elective
• Two, 6-credit hours courses in any other major

Program Requirements

The program requirements for BA in English Language program consists of 78 Credit Hours distributed as detailed below.

Major Core Courses: This set consists of the following 14 Courses encompassing 42 Credit hours:

• ENGL 120: Understanding English Grammar
• ENGL 160: Understanding Literature
• ENGL 210: Introduction to Linguistics
• ENGL 215: The Sounds of English
• ENGL 230: Prose and Fiction in English
• ENGL 270: Situational English
• ENGL 285: Writing Workshop
• ENGL 290: Poetry
• ENGL 310: Meaning in Language
• ENGL 320: Introduction to Creative Writing
• ENGL 335: Discourse Analysis
• ENGL 375: Drama
• ENGL 420: Models of Second Language Acquisition
• ENGL 470: History of the English Language

Major Elective Courses: This set consists of 12 courses encompassing 36 Credit hrs chosen from the following list:

• ENGL 240: Introduction to Language
• ENGL 255: The Psychology of Language
• ENGL 260: Shakespeare
• ENGL 265: Culture in the Classroom
• ENGL 275: Rhetoric
• ENGL 280: Business English
• ENGL 300: Foundations of Linguistic Theory
• ENGL 315: The Novel
• ENGL 330: The Victorian Age
• ENGL 345: Morphology

97
- ENGL 350: Advanced Writing for Humanities
- ENGL 355: Language in Society
- ENGL 360: Advanced Writing for Professional Fields
- ENGL 365: Advanced Creative Writing
- ENGL 415: The Romantic Movement
- ENGL 440: Special Topic in Literature or Language
- ENGL 455: Language and Gender
- TRAN 250: Contrastive Analysis

Study plan

<table>
<thead>
<tr>
<th>Year I</th>
<th>Semester 1 (Fall)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>CMPS 100A</td>
<td>Introduction to Technical Computing for the Arts</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 120</td>
<td>Understanding English Grammar</td>
<td>3</td>
</tr>
<tr>
<td>MATH 103</td>
<td>Mathematics for Social Sciences I</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 100</td>
<td>World Civilizations I</td>
<td>3</td>
</tr>
<tr>
<td>Semester 2 (Spring)</td>
<td>15 Credits</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 160</td>
<td>Understanding Literature</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Physical/ Natural Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Year II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester 3 (Fall) 15 Credits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Introduction to Linguistics</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 215</td>
<td>The Sounds of English</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 230</td>
<td>Prose and Fiction in English</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 5 (Fall) 15 Credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 310</td>
<td>Meaning in Language</td>
<td>3</td>
</tr>
<tr>
<td>EGNL 320</td>
<td>Introduction to Creative Writing</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 335</td>
<td>Discourse Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 7 (Fall) 15 Credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 420</td>
<td>Models of Second Language Acquisition</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General Elective</td>
<td>3</td>
</tr>
</tbody>
</table>
Course Descriptions

ENGL 101 - A Basic Academic English IA (3 credits)
An integrated course that focuses on improving reading skills and comprehension and developing compositional competency. Participants are guided through the processes of reading and composing various types of short essays i.e., descriptive, narrative, opinion, and comparison and contrast. Listening and speaking skills as well as grammar and vocabulary building are also enhanced. This three credit-hour course also includes 2 additional hours per week of Lab training in which students further practice the skills targeted for the course.

ENGL 102 Basic Academic English II (3 credits)
This course aims to develop the processes of composing expository and persuasive prose. It focuses primarily on essays as models for the rhetorical patterns that students will use in developing their own expository and argumentative essays. Activities include: reading, writing, discussing, researching, presenting, and thinking critically. The course is designed to enhance the research skills of gathering, recording, organizing, critiquing, and reporting information from a variety of library and electronic sources. Prerequisite: ENGL 101.

ENGL 120 Understanding English Grammar (3 credits)
This course offers basics of English Grammar and is designed to make students use correct and creative structures of English in realistic situations. Topics include auxiliaries, time and tense, subject-verb agreement, pronoun antecedent agreement, passive, conditionals, co-ordination and articles.

ENGL 160 Understanding Literature (3 credits)
This course is designed to acquaint students with the various literary genres. Without being comprehensive, the course emphasizes inquiry into works of major authors in poetry, drama, and prose. Through the study of thematically related texts, the course provides insights into the historical, political, and cultural contexts that influenced the work of these authors. It also introduces important literary concepts, such as character, plot, narrative, and imagery.

ENGL 203 Advanced Academic English I (3 crs)
This course aims to consolidate students’ communication skills in academic context. It offers students training in the development of communicative academic skills, ranging from critical reading comprehension to writing expository and argumentative essays. Students will be also trained in note-taking, summarizing, and quoting from sources, outlining and properly documenting sources in their writing. Prerequisite: ENGL 102

ENGL 204 Advanced Academic English II
(3 credits)
In this course, students continue to increase and develop their comprehension, analysis, and synthesis skills of a variety of extended texts about issues across the curriculum. Students also learn how to conduct and report independent research. Prerequisite: ENGL 203.

ENGL 210 Introduction to Linguistics
(3 credits)
This course investigates the nature of human language through a survey of some of the major findings and research results in linguistics. Topics include the biological basis of human language, the structure of sounds, phrases, and meaning, language evolution, writing systems, linguistic variation, language acquisition, and computer analyses of speech.

ENGL 215 The Sounds of English
(3 credits)
This course is an overview of English phonetics and phonology. Topics include the articulatory process, stress, and intonation. Students will learn how to transcribe spoken English into phonetic script and explore the range of variation found in English. This course will also help students recognize the differences among diverse sound systems.

ENGL 230 Prose and Fiction in English
(3 credits)
This course covers a range of Anglo-American prose genres, including short stories, autobiographical writing and essays, in order to introduce some of the themes and literary techniques prevalent in British and American writing today. The course will focus on the individual and the family and will raise questions of identity and tradition. Prerequisite: ENGL 160.

ENGL 240 Introduction to Language
(3 credits)
The aim of this course is to introduce the study of language to both non-specialists and those who are interested in language-related careers. Areas covered are human communication, the meaning and function of language, language and culture, language and thought, language acquisition, languages of the world, and the evolution of language.

ENGL 255 The Psychology of Language
(3 credits)
This course introduces students to the psychological processes that underlie linguistic behavior. Topics include theories of the language-thought relationship, language processing, language production, language comprehension, language and the brain, language acquisition, theories of language learning, and bilingualism.
ENGL 260 Shakespeare (3 credits)
In this course, students will read representative plays by Shakespeare and one
play of his contemporaries. Attention will be given to theatrical conventions, as
well as social, cultural, and intellectual history of the period. Prerequisite: ENGL
160.

ENGL 265 Culture in the Classroom (3 credits)
This course will acquaint students with the important issues related to culture
in the classroom. Course topics include definitions of culture, the relationship
between culture and language, teaching culture, designing culturally responsive
lessons and curricula, and enhancing the cultural elements in specific English
language lessons.

ENGL 270 Situational English (3 credits)
This course is a hands-on workshop designed to offer students opportunities to
speak English in diverse situations. Drawing on objectives learned in the Sounds
of English, the student will apply the theories and knowledge to actually
practice and hone their oral language abilities. Multiple role-playing scenarios
will be practiced.

ENGL 275 Rhetoric (3 credits)
This course focuses on developing students' ability to think critically and
analytically, using language in a logical, purposeful and persuasive
manner. Students will have the opportunity to improve their writing, listening and
speaking skills in a series of structured debates.

ENGL 280 Business English (3 credits)
This course focuses on diverse types of written business communication
required in commercial areas. Among these types are business memos, letters,
reports, and curriculum vitae.

ENGL 285 Writing Workshop (3 credits)
This course is designed to practice writing in English. Formats for diverse genres
of writing will be reviewed followed by writing clinics. The students will be
required to write several drafts of each assignment under close scrutiny by their
teacher and peers. Prerequisite: ENGL 203.

ENGL 290 Poetry (3 credits)
This course involves reading texts critically, particularly selected to elucidate the
nature of poetic genres and modes. It also exposes students to critical theory
and relevant aspects of social and political history. Prerequisite: ENGL 160.

ENGL 300 Foundations of Linguistic Theory (3 credits)
This course concentrates on linguistic theories that have shaped 20th-century
linguistics. This course is on theories propounded by Structural lists (e.g.
Bloomfield), Transformation lists (e.g. Chomsky), Systemic Grammarians (e.g.
Halliday) and Case Grammarians (e.g. Fillmore). This course also includes
recurrent themes and descriptive practices. Prerequisite: ENGL 210.
ENGL 310 Meaning in Language (3 credits)
This course focuses on Semantics, Pragmatics and the relationship between linguistic meaning, structure, and context. Students will explore various approaches to word meaning, phrase and sentence meaning, and observe the effects of context and background information on interpretation.

ENGL 315 The Novel (3 credits)
This course introduces students to characteristics of the novel form such as narrative structure, voice, point of view, plot and characters. Students will study and analyze one novel in detail and consider the social, cultural and political forces that shape it. Prerequisite: ENGL 160.

ENGL 320 Introduction to Creative Writing (3 credits)
This course offers opportunities for the students to experiment with various forms of creative writing. Students also explore literary devices used in contemporary literary texts and apply them to their own writing. Classes are conducted as workshops where students share their writing with each other and learn to revise their work. Prerequisite: ENGL 203.

ENGL 330 The Victorian Age (3 credits)
This course studies the works of major writers of the Victorian era and emphasizes their social, cultural, and philosophical background. Students will read and analyze primary literary texts in various genres like prose, poetry, and fiction. Prerequisite: ENGL 160.

ENGL 335 Discourse Analysis (3 credits)
This course investigates human discourse as a means to understand the nature of language and language use. It examines different forms of discourse using various approaches including speech act theory, pragmatics, conversational analysis, and ethnography of communication. Pre-requisite: ENGL 310.

ENGL 345 Morphology (3 credits)
This course trains students to analyze and describe word constituents by means of authentic language data from a wide variety of languages. Students will learn how to correctly use common linguistic terms relating to morphology, organize data and perform morphological analyses, and write clear and adequate descriptions of the patterns discovered in the analyses.

ENGL 350 Advanced Writing for Humanities (3 credits)
This course, intended for students majoring in the Social Sciences, prepares students to write and present papers related to their fields of study. It includes individual and/or group preparation of reports, term papers, multimedia presentations, and other specialized forms of writing. This class is equivalent to ENGL 360 and is offered in spring semesters. Prerequisite: ENGL 204.

ENGL 355 Language in Society (3 credits)
This course explores the role of language in society, and introduces the students to research methodologies applied in sociolinguistics. Topics include multilingualism and language choice, Pidgins and Creoles, regional and social
variation, conventions of conversation and politeness, and interactions between languages and identity, language and social class, language and culture, and language and thought.

ENGL 360 Advanced Writing for Professional Fields (3 credits)
This course, intended for students majoring in English or Education, prepares students to write and present papers related to their fields of study. It includes individual and/or group preparation of reports, term papers, multimedia presentations, and other specialized forms of writing. This course is equivalent to ENGL 350 and is offered in fall semesters. Prerequisite: ENGL 204.

ENGL 365 Advanced Creative Writing (3 credits)
This course is a sequel to English 320 with the objective of refining students’ creative writing skills by introducing them to several texts, while emphasizing one of the following genres: fiction, nonfiction, poetry, or drama. Prerequisite: ENGL 320.

ENGL 375 Drama (3 credits)
This course emphasizes theoretical definition of dramatic form, changes in the conception of dramatic genres, and the nature of the genre as it influences the expectations of the reader. Prerequisite: ENGL 160.

ENGL 415 The Romantic Movement (3 credits)
This course is an introduction to the literature of the Romantic period in Britain. Students will be asked to read and analyze a selection of poems and prose texts by representative authors such as Wordsworth, Blake, Coleridge, Keats, Byron, and Mary Shelley. Reference will be made to the cultural contexts of literature. Prerequisite: ENGL 160.

ENGL 420 Models of Second Language Acquisition (3 credits)
This course introduces students to the study of second language acquisition and provides them with training in the collection, analysis, and interpretation of representative learner language data in second language contexts. Course topics include universals of language acquisition, major theoretical models of second language acquisition, and individual differences in second language acquisition. Implications for language teaching are also addressed.

ENGL 440 Special Topic in Literature or Language (3 credits)
This course introduces students to independent research on a topic decided by the professor. Students will use texts by important authors or on subjects of importance to the subject of English language as a basis for their own investigations and explorations of current literary and language theory. The students’ work will be shared with the class in a formal research paper and multimedia presentations. Prerequisite: ENGL 204.

ENGL 455 Language and Gender (3 credits)
This course surveys and evaluates the research that has been done on gender differences in language use. Topics include power and solidarity, gender
differences in turn-taking, choice of topic, and communicative styles, and anthropological work on men and women’s speech genres. Students should complete the course with enhanced awareness of the role of language in relation to issues of inequality and sexual politics.

ENGL 470 History of the English Language (3 credits)
This course is a survey of the history of the English language from its earliest Indo-European origins to the present day. The nature and changes of the language are presented by reviewing the shifts that have occurred from Indo-European, Germanic, Old English, Middle English, up to Early and Modern English.
Bachelor of Arts (BA) in Translation

The degree of BA in Translation is a four-year, 120 credit hours, study program designed to equip students with the necessary knowledge and skills to translate from English into Arabic and vice versa, and to edit English and Arabic texts. The philosophy underlying the BA in Translation is to integrate essential intercultural and interdisciplinary knowledge, inseparable from language acquisition and the technical understanding of language. This integration will ultimately be oriented towards the practical craft of translation. In this sense, students enrolled in the BA in Translation Program will have the unique advantage of a holistic and inclusive understanding of language in addition to linguistic-technical skills. The partnership between the practical, the cultural, and the theoretical-intellectual elements makes the BA in Translation a valuable and rewarding degree.

Learning Outcomes

Theoretical Knowledge

- Students will understand the proper approach to translation issues be it socio- and psycholinguistics, pragmatics, semantics, etc.
- Students will be able to carry out comparative and contrastive analysis between the two languages.
- Students will be aware of all viable and useful strategies needed to achieve equivalence at different levels between English and Arabic.

Practical Translation

- Students will be able to translate/interpret different text types.
- Students will identify the special linguistic and stylistic characteristics of each text type.
- Students will identify the tools and techniques of generic and discourse analyses.
- Students will be aware of effective use of specialized dictionaries and glossaries in various fields to help find closest matches of senses of translation units.
- Students will be aware of the complexities of cultural differences when rendering and interpreting different text types

Language competencies

Students will improve different language skills in both Arabic and English. They will improve in:

- Oral communicative skills
- Reading comprehension skills
- Writing skills in both languages
- Research skills
Mission

The mission of the B.A. program in Translation in the Dept. of Languages and Translation at Dhofar University is to equip students with the necessary knowledge and skills to translate/interpret a variety of written and spoken texts from English to Arabic and vice versa and to integrate essential intercultural and interdisciplinary knowledge inseparable from language acquisition and the technical understanding of language in order to graduate skilful translators for the local, regional, and national market.

Graduation Requirements

To graduate with a BA in Translation, students must satisfactorily complete 120 credit hours of course work from the courses that are described in the Program of Study with an overall minimum average of 65 percent, and a cumulative average of 70 percent in the major courses.

University Requirements

The general education component for a BA in Translation includes the following ten course encompassing 30 credit hours:

- ARAB 101: Academic Writing in Arabic
- CMPS 100A: Introduction to Technical Computing for the Arts
- ENGL 101: Basic Academic English I
- ENGL 102: Basic Academic English II
- ENGL 203: Advanced Academic English I
- ENGL 204: Advanced Academic English II
- MATH 103: Mathematics for Social Sciences
- SOCS 100: World Civilizations I
- SOCS 102: Oman Society
- SOCS 200: World Civilizations II

College Requirements

The college requirement component for a BA in Translation includes the following 4 course encompassing 12 credit hours:

- One course in physical/natural sciences electives (3 Cr. hrs.)
- One course in humanities/social sciences electives (3 Cr. hrs.)
- Two courses in any other majors (6 Cr. hrs.)

Program Requirements

The program requirement component for a BA in Translation includes the following 26 course encompassing 78 credit hours:

Major Core Courses: This set consists of the following 16 Courses encompassing 48 Credit hours:
- ARAB 115: Basic Arabic Syntax and Morphology
- ARAB 360: Arabic Semantics and Lexicography
- ENGL 120: Understanding English Grammar
- ENGL 210: Introduction to Linguistics
- ENGL 215: The Sounds of English
- ENGL 335: Discourse Analysis
- TRAN 150: Introduction to Translation
- TRAN 220: Translation Theory
- TRAN 250: Contrastive Analysis
- TRAN 260: Translation Techniques
- TRAN 300: Translating Business Texts
- TRAN 310: Translating Journalistic Texts
- TRAN 355: Contrastive Grammar and Syntax
- TRAN 360: Translating Scientific Texts
- TRAN 420: Translating Legal Documents
- TRAN 480: External Practicum

Major Elective Courses: This set includes ten course encompassing 30 credit hours distributed as follows:

I. Five Translation Electives courses encompassing 15 credit hours chosen from the following list:

- TRAN 225: Introduction to Interpreting
- TRAN 330: Comparative Literature
- TRAN 365: English Literature in Arabic Translations
- TRAN 410: Arabic Literature in English Translations
- TRAN 425: Contrastive Rhetoric and Stylistics
- TRAN 435: Lexicography and Terminology
- TRAN 465: Critical Analysis of Translation Texts
- TRAN 470: Machine Translation

II. Two Arabic Language Electives courses encompassing 6 credit hours chosen from the following list:

- ARAB 180: Advanced Arabic Syntax
- ARAB 200: Survey of Arabic Literature
- ARAB 220: Arabic Sociolinguistics
- ARAB 300: Modern Arabic Poetry
- ARAB 370: Modern Arabic Novel
- ARAB 430: Special Topics in Arabic Linguistics
- ARAB 470: Special Topics in Arabic Literature

III. Three English Language Elective courses encompassing 9 credit hours selected from the following list:

- ENGL 240: Introduction to Language
- ENGL 285: Writing Workshop
• ENGL 310: Meaning in Language
• ENGL 320: Introduction to Creative Writing
• ENGL 350: Advanced Writing for Humanities
• ENGL 355: Language in Society
• ENGL 360: Advanced Writing for Professional Fields
• ENGL 365: Advanced Creative Writing
• ENGL 440: Advanced Academic Writing
• ENGL 460: Politics of Language
• ENGL 470: History of the English Language

Study Plan: BA in Translation

<table>
<thead>
<tr>
<th>Year I</th>
<th>Semester 1 (Fall)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 100A</td>
<td>Introduction to Technical Computing for the Arts</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 120</td>
<td>Understanding English Grammar</td>
<td>3</td>
</tr>
<tr>
<td>MATH 103</td>
<td>Mathematics for Social Science I</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2 (Spring)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>ARAB 115</td>
<td>Basic Arabic Syntax and Morphology</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
</tr>
<tr>
<td>SOCS 100</td>
<td>World Civilizations I</td>
</tr>
<tr>
<td>TRAN 150</td>
<td>Introduction to Translation</td>
</tr>
<tr>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year II</th>
<th>Semester 3 (Fall)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Introduction to Linguistics</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 215</td>
<td>The Sounds of English</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 220</td>
<td>Translation Theory</td>
<td>3</td>
</tr>
<tr>
<td>Physical/Natural Sciences Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Semester 4 (Spring)</td>
<td>15 Credits</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 250</td>
<td>Contrastive Analysis</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 260</td>
<td>Translation Techniques</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>English Language Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Arabic Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Year III

<table>
<thead>
<tr>
<th>Semester 5 (Fall)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>ENGL 335</td>
<td>Discourse Analysis</td>
</tr>
<tr>
<td>TRAN 300</td>
<td>Translating Business Texts</td>
</tr>
<tr>
<td>TRAN 310</td>
<td>Translating Journalistic Texts</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Oman Society</td>
</tr>
<tr>
<td></td>
<td>Major Translation Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6 (Spring)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>ARAB 360</td>
<td>Arabic Semantics and Lexicography</td>
</tr>
<tr>
<td>TRAN 355</td>
<td>Contrastive Grammar and Syntax</td>
</tr>
<tr>
<td>TRAN 360</td>
<td>Translating Scientific Texts</td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Sciences Elective</td>
</tr>
<tr>
<td></td>
<td>Major Translation Elective</td>
</tr>
</tbody>
</table>

Year IV

<table>
<thead>
<tr>
<th>Semester 7 (Fall)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>TRAN 420</td>
<td>Translating Legal Documents</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilizations II</td>
</tr>
<tr>
<td></td>
<td>Major Translation Elective</td>
</tr>
<tr>
<td></td>
<td>English Language Elective</td>
</tr>
<tr>
<td></td>
<td>General Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8 (Spring)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>TRAN 480</td>
<td>External Practicum</td>
</tr>
<tr>
<td></td>
<td>English Language Elective</td>
</tr>
<tr>
<td></td>
<td>Major Translation Elective</td>
</tr>
<tr>
<td></td>
<td>Major Translation Elective</td>
</tr>
<tr>
<td></td>
<td>Arabic Elective</td>
</tr>
</tbody>
</table>

Completion of the BA in Translation - Total Credits 120
Course Descriptions

TRAN 150 Introduction to Translation (3 credits)
This course introduces the preliminaries of translation as both a process and a product. It covers the main issues that are involved in producing a translation, the standards for acceptable translations, the cultural issues involved in translation, and the general rules that govern the translation of texts from English into Arabic and vice versa.

TRAN 220 Translation Theory (3 credits)
This course introduces students to the history and theories of translation. The purpose of the course is to make students aware of the main theoretical debates that have surrounded translation throughout history and more particularly in the 20th century, in order to enable them to see the relevance of theory to the practice of translation.

TRAN 225 Introduction to Interpreting (3 credits)
The aim of this course is to provide students with basic knowledge in the field of interpretation from English into Arabic and vice versa. Practical training in listening and oral skills is central to this course. Both theoretical and practical perspectives are integrated.

TRAN 250 Contrastive Analysis (3 credits)
This course introduces students to the cross-cultural aspects of discourse organization for different genres and different purposes, focusing on a comparison between Arabic and English languages/cultures. Students will become acquainted with the problems of Arabic speakers in learning English and will be able to describe similarities and differences between Arabic and English.

TRAN 260 Translation Techniques (3 credits)
This course provides students with general training in translation of a variety of text types. Students will become aware of the various methods that can be used to tackle challenging texts and will perform annotated translations with commentaries, editing exercises, and textual analyses, enabling them to draw conclusions concerning the purpose of the original message and the role of the translator as communicator.

TRAN 300 Translating Business Texts (3 credits)
This course provides students with training in reading, analyzing, and translating business, finance, and economics reports and articles. Students will compile a special topics portfolio of translated business texts, annotated translations with commentaries, textual analyses, and editing exercises. Prerequisite: TRAN 260.

TRAN 310 Translating Journalistic Texts (3 credits)
This course provides students with training in reading, analyzing, and translating journalistic texts. Students will compile a special topics portfolio of translated journalistic texts, annotated translations with commentaries, textual analyses, and editing exercises. Prerequisite: TRAN 260.
TRAN 330 Comparative Literature (3 credits)
In this course, students are exposed to theoretical issues of comparative literature. A broad cultural perspective is adopted to acquaint students with the ways in which literary works of a culture influence other cultures. Theoretical topics based on literary works in English and Arabic will be analyzed.

TRAN 355 Contrastive Grammar and Syntax (3 credits)
This course exposes students to syntactic rules in Arabic and English that may be similar or different in the other language. Students will also focus on the contrastive aspect of grammar when translating from one language to another.

TRAN 360 Translating Scientific Texts (3 credits)
This course provides students with training in reading, analyzing, and translating scientific, technical, and technological texts. Students will compile a special topics portfolio of translated scientific and technical texts, annotated translations with commentaries, textual analyses, and editing exercises. Prerequisite: TRAN 250.

TRAN 365 English Literature in Arabic Translations (3 credits)
This course deals with the metamorphosis of English literary texts in Arabic translations. Students will be familiar with the problems of literary translation, especially in terms of transplanting English texts into Arabic context. Issues like faithful, literal, free translation and cultural adaptation are dealt with extensively. Students will also be exposed to techniques of literary translation.

TRAN 410 Arabic Literature in English Translations (3 credits)
This course deals with the metamorphosis of Arabic literary texts in English translations. Students will become familiar with the problems of literary translation, especially in terms of transplanting Arabic texts into English context. Issues like faithful, literal, free translation and cultural adaptation are dealt with extensively. Students will also be exposed to techniques of literary translation.

TRAN 420 Translating Legal Documents (3 credits)
This course focuses on the theory and practice of translating legal instruments (such as certificates and contracts) from and into English and Arabic. Attention is paid to linguistic features of documentary texts (such as constitutions, charters and protocols) and the nature of the translational equivalence in the two languages. Prerequisite: TRAN 260.

TRAN 425 Contrastive Rhetoric and Stylistics (3 credits)
This course introduces students to a higher level of contrastive analysis between Arabic and English. The purpose of the course is to equip students with a firm knowledge of different styles of the two languages including idioms, figures of speech, metaphors, and so forth in order to utilize such knowledge in translating English and Arabic texts. A special focus will be on idiomatic and metaphoric styles, and the influence of cultural settings on the production and transfer of stylistic forms from Arabic to English and vice versa.
TRAN 435 Lexicography and Terminology (3 credits)
This course focuses on the problems of equivalences and variability of terminologies. The phenomena of terminology banks and databases are studied, as well as the role of Arabic language academies in the creation and standardization of terminologies in Arabic.

TRAN 465 Critical Analysis of Translated Texts (3 credits)
This course presents a functional pragmatic approach to the peculiarities of situational linguistics, their sources and their targets; and then assesses the results of the situation. The students will be required to write a critique of a translated work.

TRAN 470 Machine Translation (3 credits)
This course offers training in machine translation and it focuses on the differences between human translation/interpretation and machine translation.

TRAN 480 External Practicum (3 credits)
This course offers an opportunity for supervised translation in a commercial or government office. Periodic reports will be a part of the requirement for this practicum course.
Bachelor of Arts (BA) in Arabic Language

Objectives:

- Reinforcing the students’ language ability and make them acquire the skills of correct expression.
- Reinforcing students’ literary ability to realize beauty in language styles.
- Familiarize students with methods of using the different books and references in the library as well as heritage books.
- Developing the students’ skills in reading and speaking and encouraging them to think logically and creatively.
- Developing students writing and dictation abilities and skills and training them to write correctly.
- Training students to use the correct forms of syntax and morphology while reading, writing or expressing.
- Developing the Arabic Language and trying to spread it as it is the language of religion and civilization.

Study Plan

(120 credit hours)

The study plan is divided into:

- University Requirements (15 credit hours)
- Program Requirements (96 credit hours)
- Major Electives (9 credit hours)

University Requirements:

(15 credit hours)

- Academic writing in Arabic
- Basic Academic English I
- Introduction to IT (Arts only)
- Omani Society
- Basic Academic English II

Program Requirements:

(96 credit hours)

Major core courses

- ARAB 102 Syntax and Morphology (1)
- ARAB 103 Introduction to Arabic Literature
- ARAB 104 Advanced Academic Writing
- ARAB 105 Pre-Islamic Literature
- ARAB 106 Introduction to Linguistics
- ARAB 202 Syntax and Morphology (2)
- ARAB 203 Phonetics
- ARAB 204 Studies in Quran and Hadith
- ARAB 205 Lexicography and Terminology
- ARAB 206 Modern Arabic Novel
- ARAB 207 Jihad Poetry
- ARAB 208 Special Topic in Literature
- ARAB 209 Ancient Arabic Prose and fiction
- ARAB 210 Historical Linguistics
- ARAB 213 Stylistics
- ARAB 303 Andalusian Literature
- ARAB 304 Modern Arabic Poetry
- ARAB 305 Sociolinguistics
- ARAB 306 Modern Arabic Drama
- ARAB 307 Theory of Literature and Criticism
- ARAB 308 Syntax and Morphology (3)
- ARAB 309 Prosody
- ARAB 310 Overseas Literature
- ARAB 401 Modern Arabic Renaissance Literature
- ARAB 402 Syntax and Morphology (4)
- ARAB 403 Mystic Literature
- ARAB 404 Folk Literature
- ARAB 405 Applied Linguistics
- ARAB 406 Abbasid Poetry
- ARAB 407 Applied Phonetics
- ARAB 408 Comparative Literature
- ARAB 409 Special Topic in Language

Major Elective Courses:

(9 credit hours)

- ARAB 211 Literary and Linguistic Sources and References
- ARAB 212 Oman and Arabian Peninsula Literature
- ARAB 214 Arabic Dialects
- ARAB 311 Arabic Rhetoric
- ARAB 313 Literary Text Appreciation
- ARAB 314 Language Workshop
- ARAB 315 Issues in Omani Literature
- ARAB 411 Orientalism and Orientalists
- ARAB 412 Modern Studies in Linguistics
Study Plan

Semester I

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit hours</th>
<th>Pre-requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ARAB 101 Academic writing in Arabic</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ENGL 101 Basic academic English I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CMPS 100A Introduction To Technical Computing For The Arts</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SOCS 102 Omani Society</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ARAB 102 Syntax and Morphology (1)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Semester II

<table>
<thead>
<tr>
<th>Code</th>
<th>Course title</th>
<th>Credit hours</th>
<th>Pre-requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENGL 102 Basic academic English II</td>
<td>3</td>
<td>ENGL 101A</td>
</tr>
<tr>
<td>2</td>
<td>ARAB 103 Introduction to Arabic Literature</td>
<td>3</td>
<td>ARAB 101</td>
</tr>
<tr>
<td>3</td>
<td>ARAB 104 Advanced Academic Writing</td>
<td>3</td>
<td>ARAB 101</td>
</tr>
<tr>
<td>4</td>
<td>ARAB 105 Pre-Islamic Literature</td>
<td>3</td>
<td>ARAB 101</td>
</tr>
<tr>
<td>5</td>
<td>ARAB 106 Introduction to Linguistics</td>
<td>3</td>
<td>ARAB 102</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Semester III

<table>
<thead>
<tr>
<th>Code</th>
<th>Course title</th>
<th>Credit hours</th>
<th>Pre-requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ARAB 202 Syntax and Morphology (2)</td>
<td>3</td>
<td>ARAB 102</td>
</tr>
<tr>
<td>2</td>
<td>ARAB 203 Phonetics</td>
<td>3</td>
<td>ARAB 106</td>
</tr>
<tr>
<td>3</td>
<td>ARAB 204 Studies in Quran and Hadith</td>
<td>3</td>
<td>ARAB 102</td>
</tr>
<tr>
<td>4</td>
<td>ARAB 205 Lexicography and Terminology</td>
<td>3</td>
<td>ARAB 106</td>
</tr>
<tr>
<td>5</td>
<td>ARAB 206 Modern Arabic Novel</td>
<td>3</td>
<td>ARAB 103</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Semester IV</td>
<td>15 credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course title</td>
<td>Credit hours</td>
<td>Pre-requisite</td>
</tr>
<tr>
<td>1</td>
<td>ARAB 207 Jihad Poetry</td>
<td>3</td>
<td>ARAB 103</td>
</tr>
<tr>
<td>2</td>
<td>ARAB 208 Special Topic in Literature</td>
<td>3</td>
<td>ARAB 103</td>
</tr>
<tr>
<td>3</td>
<td>ARAB 209 Ancient Arabic Prose and fiction</td>
<td>3</td>
<td>ARAB 103</td>
</tr>
<tr>
<td>4</td>
<td>ARAB 210 Historical Linguistics</td>
<td>3</td>
<td>ARAB 106, ARAB 203</td>
</tr>
<tr>
<td>5</td>
<td>ARAB 213 Stylistics</td>
<td>3</td>
<td>ARAB 103</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester V</th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course title</td>
</tr>
<tr>
<td>1</td>
<td>ARAB 303 Andalusian Literature</td>
</tr>
<tr>
<td>2</td>
<td>ARAB 304 Modern Arabic Poetry</td>
</tr>
<tr>
<td>3</td>
<td>ARAB 305 Sociolinguistics</td>
</tr>
<tr>
<td>4</td>
<td>ARAB 306 Modern Arabic Drama</td>
</tr>
<tr>
<td>5</td>
<td>ELECTIVE</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester VI</th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course title</td>
</tr>
<tr>
<td>1</td>
<td>ARAB 307 Theory of Literature and Criticism</td>
</tr>
<tr>
<td>2</td>
<td>ARAB 308 Syntax and Morphology (3)</td>
</tr>
<tr>
<td>3</td>
<td>ARAB 309 Prosody</td>
</tr>
<tr>
<td>4</td>
<td>ARAB 310 Overseas Literature</td>
</tr>
<tr>
<td>5</td>
<td>ELECTIVE</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
</tr>
</tbody>
</table>
Semester VII

<table>
<thead>
<tr>
<th>Code</th>
<th>Course title</th>
<th>Credit hours</th>
<th>Pre-requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ARAB 401</td>
<td>Modern Arabic Renaissance Literature</td>
<td>3</td>
<td>ARAB 103</td>
</tr>
<tr>
<td>2 ARAB 402</td>
<td>Syntax and Morphology (4)</td>
<td>3</td>
<td>ARAB 308</td>
</tr>
<tr>
<td>3 ARAB 403</td>
<td>Mystic Literature</td>
<td>3</td>
<td>ARAB 103</td>
</tr>
<tr>
<td>4 ARAB 404</td>
<td>Folk Literature</td>
<td>3</td>
<td>ARAB 103</td>
</tr>
<tr>
<td>5 ARAB 405</td>
<td>Applied Linguistics</td>
<td>3</td>
<td>ARAB 203</td>
</tr>
</tbody>
</table>

TOTAL 15 credits

Semester VIII

<table>
<thead>
<tr>
<th>Code</th>
<th>Course title</th>
<th>Credit hours</th>
<th>Pre-requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ARAB 406</td>
<td>Abbasid Poetry</td>
<td>3</td>
<td>ARAB 103</td>
</tr>
<tr>
<td>2 ARAB 407</td>
<td>Applied Phonetics</td>
<td>3</td>
<td>ARAB 203</td>
</tr>
<tr>
<td>3 ARAB 408</td>
<td>Comparative Literature</td>
<td>3</td>
<td>ARAB 310</td>
</tr>
<tr>
<td>4 ARAB 409</td>
<td>Special Topic in Language</td>
<td>3</td>
<td>ARAB 402</td>
</tr>
<tr>
<td>5 Elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL 15 credits

Course Descriptions

ARAB 102 Syntax and Morphology (1) (3 credits)
This module focuses on the basic elements of Arabic sentences and the word formation rules and principles. The students are acquainted with the necessary knowledge to differentiate between grammatically correct and incorrect sentences. Students are expected to analyze different types of texts and produce adequate examples.

ARAB 103 Introduction to Arabic Literature (3 credits)
This module explores the history of Arabic literature from pre-Islamic period to the modern era. It also presents examples of poetry and prose to show the most important features and characteristics of each era. (Prerequisite ARAB 101)

ARAB 104 Advanced Academic Writing (3 credits)
This module focuses on consolidating the students' writing skills in academic activities such as note-taking, summarizing, understanding main ideas and details, writing definitions, classifying, inferring, supporting a position, utilizing resources like the Internet, presenting, writing cohesive reports and conducting research. (prerequisite ARAB 101)
ARAB 105 Pre-Islamic Literature (3 credits)
This module explores the different shapes of the cultural, social, political and intellectual life of the pre-Islamic Arabs through examples of highly achieved poetry and prose. It also presents a critique of some of the most disputed issues in pre-Islamic literature such as the beginning of poetry and its priority, the issue of plagiarism and the issue of narration and writing. Students are also acquainted with the most important characteristics and topics of pre-Islamic poetry such as al Muaallaqat, al Hawliyat, al Monsifat, al Saaleek poetry. They are also given the required tools to analyse, interpret and recognize the parts of the pre-Islamic poem. (prerequisite: ARAB 101)

ARAB 106 Introduction to Linguistics (3 credits)
This module investigates the fundamental nature of linguistics at the level of phonetics, syntax, morphology, semantics as well as the relationship them. It also explores the approaches of studying linguistics such as historical, comparative and contrastive approaches. (Prerequisite ARAB 106)

ARAB 202 Syntax and Morphology (2) (3 credits)
This module depends on the knowledge students obtain in ARAB 102. It further investigates how to analyze different texts of Arabic literature and focuses on the mechanism of how to form syntactically and morphologically correct sentences. Students are expected to deliver presentations and engage in discussion of modern linguistic theories. (prerequisite ARAB 102)

ARAB 203 Phonetics (3 credits)
This module is a study of the articulatory and acoustic features of Arabic sounds, both in Classical Arabic and modern standard Arabic. A special emphasis will be on the relationship between semantics and phonology. (prerequisite ARAB 106)

ARAB 204 Studies in Quran and Hadith (3 credits)
This module reveals the uniquely beautiful style of the Holy Quran and Hadith. It also explores the eloquent miracle of language expressed in the Holy Quran with a focus on how to infer guidance and laws from texts. In addition to that, the module presents applied studies on the effects of eloquence on the beauty of language in the Holy Quran and Hadith. (prerequisite ARAB 102)

ARAB 205 Lexicography and Terminology (3 credits)
The module investigates in part 1 the structure of the Arabic lexicography as well as the most important Arabic dictionaries in old and modern times. As for part 2, the module covers the study of meaning in Arabic by Arab grammarians and philosophers and provides new insights in light of modern linguistic theories. (Prerequisite ARAB 106)

ARAB 206 Modern Arabic Novel (3 credits)
The focus of this course is on the rise of the modern Arabic novel with its first pioneers and their first attempts until the modern novelists who are influenced by European Literature. Students are required to read and analyze samples of works by prominent Arab novelists. (prerequisite ARAB 103)
ARAB 207 Jihad Poetry (3 credits)
This module analyzes some examples of Arabic poetry during the Islamic conquests with a focus on the changes that occurred in its style and purposes after the emigration of many Arabs to the territories they had conquered. It also examines the social, economical and political changes that affected the nature of poetry in that era, especially during Umayyad Period. (prerequisite ARAB 103)

ARAB 208 Special Topic in Literature (3 credits)
The course is an in-depth study of a literary topic. Pre-requisite: ARAB 103

ARAB 209 Ancient Arabic Prose and Fiction (3 credits)
The course analyzes samples of early Arabic prose such as the writings of Ibn Al Mugaffa’, Al Jahidh, and Ibn Kholdoun. It also surveys the evolution of prose and its influence on Arabic writings of later epochs.

ARAB 210 Historical Linguistics (3 credits)
The course covers historical linguistics with concentration on Semitic studies. After an introduction on the methods of comparing and contrasting and reconstructing ancient languages, students will have a chance to inspect some ancient scripts and identify the phonetic, syntactic, grammatical, and semantic variations in a number of ancient and modern Semitic languages. Pre-requisite: ARAB 106 and ARAB 203.

ARAB 213 Stylistics (3 credits)
The course studies the emergence and concepts of stylistics and the relationship between stylistics and rhetoric (AL Balaghah). It also highlights the major traits and applications of stylistics in literature and criticism. It further points out the bases that help in applying and utilizing stylistics in textual analysis and studies.

ARAB 303 Andalusian Literature (3 credits)
The course is meant to orient the students on the similarities and differences between Arabic literature in the East and its counterpart in Andalusia and North Africa. It studies the major subjects that permeated Andalusian and North African prose and poetry, including love, courting, description of nature, search for the truth, and elegies of cities.

Moreover, the course studies the Muwashahat poems, the factors that led to writing them, scholarship on this type of poetry, and their place and importance in the evolution of Arabic poetry. Pre-requisite: ARAB 103

ARAB 304 Modern Arabic Poetry (3 credits)
The course studies and analyzes selected poems from the modern period. It also studies the factors that led to the evolution of Arabic poetry beginning from Bakathir’s early attempts of innovation, the movement of free verse, the poetic plays of Shawqi, the Romantic movement, and most recently the prose poem. Pre-requisite: ARAB 103

ARAB 305 Sociolinguistics (3 credits)
The course studies the variations of language in light of socio-geographic factors. It also focuses on issues relevant to politics in language, linguistic diversity, and language and identity. Pre-requisite: ARAB 203

ARAB 306 Modern Arabic Drama (3 credits)
The course studies modern Arabic drama and the history of its evolution as a new genre in Arabic literature. Students will study and analyze a number of famous dramas. Pre-requisite: ARAB 103

ARAB 307 Theory of Literature and Criticism (3 credits)
The course surveys the theory of literature and criticism from the beginning till now. It also points out the favorite literary subjects for critics throughout the ages. Pre-requisite: ARAB 209

ARAB 308 Syntax and Morphology (3) (3 credits)
This course studies the following topics in syntax: prepositions, genitive, praising styles, nouns that function as verbs and non inflectional nouns. In morphology, derivation when possible, infinitives, etc are studied. Prerequisite: ARAB 202.

ARAB 309 Prosody (3 credits)
The course teaches traditional prosody and its distinctive features. Students learn how to scan poetry, know all the 16 meters and their variations of feet, rhyme, prosody of free verse, and modern theories of rhythm. Pre-requisite: ARAB 203

ARAB 310 Overseas Literature (3 credits)
This course is a survey of Arabic literature in Diaspora in North America and South America. It sheds light on the reasons and motives of migration in a quick historical introduction beginning from the end of 19th century. The course also aims to introduce the writers of Diaspora, with focus on the major writers, samples of their work, the innovations they introduced, and their contributions that enriched Arabic literature. The course further introduces the Orientalist views of that literature. Pre-requisite : ARAB 103

ARAB 401 Modern Arabic Renaissance Literature (3 credits)
The course studies the evolution of Arabic literature as one of the landmarks of modern Arabic Renaissance between 1800-1940. It highlights the major factors that influenced Arabic literature of that period that witnessed contact and openness to Western literatures. A selection of prose and poetry by pioneers and innovators will be studied. The course will further survey the evolution of Arabic literature since 1940 and points out the new literary movements that appeared during that period and were influenced by Western literature such as the Neo-Classical (renaissance and rebirth), Romantic, and Modern movements. A selection of prose and poetry texts will be studied to show the distinctive features of each movement. Pre-requisite: ARAB 103

ARAB 402 Syntax and Morphology (4) (3 credits)
This course studies the following syntactical topics: vocatives, lamentations, dropping syncope, warning and temptation styles, verbs, etc. In morphology, diminutive, initiation and pausing, etc. are studied.

ARAB 403 Mystic Literature (3 credits)
This course aims to acquaint students with fist literature, reasons for its beginning, most prominent people, what distinguish it from other literature fields; it is considered one of the most important aspects of Arab literature. Prerequisite: Arab 103

ARAB 404 Folk literature (3 credits)
This course with the subject of folk literature, different folk tale, like: The one Thousand and One Nights, stories and adventures of heroes like: Bani Hilal story, Saif Bin Thi Yazan, Antara Al Absi And Al-Zeer Salim...etc. Such examples characterize and distinguish this kind of literature. Prerequisite: Arab 103

ARAB405 Applied Linguistics (3 credits)
This course deals with using applied linguistics in teaching Arabic for native and non native speakers in addition to translation issues, acquiring language, error analysis and Contrastive linguistics. Prerequisite: Arab 203

ARAB 406 Abbasid Poetry (3 credits)
This course deals with Abbasid Poetry and concentrates on the historical, political and social background for that period. In the first part of the course students study a number of the most famous poets of first Abbasid period which ends in the time of Caliph Al Motasem. The second part deals with the rest of the late poets until the falling of Baghdad. Prerequisite: Arab 103

ARAB 407 Applied Phonetics (3 credits)
This course deals with application study on the modern phonology using whatever possible of the new and modern theories of western scholars and to make compressions and apply those theories on Arabic and its different dialects. Prerequisite: Arab 203

ARAB 408 Comparative Literature (3 credits)
This course deals with the relationship between old and new Arabic literature and the literature of other languages like Greek and Farsi literature, the relationship between old Arabic poetry and the poets of Altrobador, the effect of modern English and Spanish on modern Arabic poetry. The course also deals with the Arabic experience in the field of comparative literature worldwide: French, American, German, Slavic.

ARAB 409 Special Topic in Language (3 credits)
This course focuses on one language Aspect in details. Prerequisite: Arab 402.

ARAB 211 Literary and Linguistic Sources and References (3 credits)
This course introduces the student to eminent linguistic and literary heritage sources. This can be achieved by surveying the different styles of traditional writers and comparing it with modern styles. It is hoped that such a course will create link between tradition and modernity. Prerequisite: ARAB 209
ARAB 212 Oman and the Arabian Peninsula Literature (3 credits)
This course surveys literature of Oman and the Arabian Peninsula as well as the literature of Omani emigrants in Asia and Africa. Literature in different historical periods. Famous men of letters in Oman and the Arabian Peninsula in the modern age. Modern trends in the Arabian and different genres (maqaamah, essay, rhetoric, poetry and the novel) with analytic study of each trend. Prerequisite ARAB 207

ARAB 214 Arabic Dialects (3 credits)
This course deals with the difference between language and dialect. A survey on some of the most well-known old and modern Arabic dialects. The phonology, morphology, syntax and semantics of such dialects. Prerequisite: ARAB 204

ARAB 311 Arabic Rhetoric (3 credits)
This course studies the emergence of Arabic rhetorics, its development and its branches:
- bayaan(rhetoric) and its development.
- semantics
- literary techniques (badii’)

ARAB 313 Literary Text Appreciation (3 credits)
This course deals with the following:
- the Arabic literary text and its relation to the culture of the text producer.
- the position of language, its diverse semantic aspects and understanding the literary text.
- the different readings of the texts.
All these can be achieved through applications and analysis by selecting a number or texts which can change in every semester. Prerequisite: ARAB 304

ARAB 314 Language Workshop (3 credits)
This course deals with studying the analysis of linguistic styles, starting from the sound level moving the word level, syntax, semantics and rhetoric aspects. The practical part of the course will deal with selected texts (old or new) through which the role of the linguistic function of such text can be defined. Prerequisite: ARAB 308

ARAB 315 Issues in Omani Literature (3 credits)
This course aims at projecting the authenticity of the Arabic culture in Oman through studying different sources of literary works through centuries, especially poetry. In order to illustrate the important of the literary and poetic sources of Omani literature, it is necessary to study the factors that influenced its direction. Also, the different genres of the Omani literature should be studied together with examples of some eminent names of men of letters in Oman, both of older generations and modern ones. These will include poets like L Al-Sitali, Al-Nabhani, Al-Ghashri, IbnRuzaiq, Sheikh Musallam Al-Bahlani, Noor-Eddin Al-Salmi, Sheik Abdullah Al-Khalili and others. The history of literature in Oman will also be reviewed in order to shed light on certain
literary and linguistic issues in this part of the Arab world. Prerequisite: ARAB 103

ARAB 410 History of the Islamic thought groups (3 credits)
This course examines the factors that led to the emergence of the Islamic thought groups and the prominent ones. The terminology of Islamic theology will be discussed and groups like mu’tazilah, ash’aries and imaamis will be discussed in more details. By examining more literary texts related to such groups and schools of thought, more light can be shed on the features of such literature. Prerequisite: ARAB 403

ARAB 411 Orientalism and Orientalists (3 credits)
This is an elective course we can be taken by both Arabic and non-Arabic major students. It includes:

- the beginnings of western interest of the Islamic east and its relation to colonial movement.
- the writings of the Orientalists against Islam in the 19th century.
- the objective attitude in the 20th century.
- the efforts of Brockelmann, Plachir, Massinon and Andre Mickel in classification, translation of Arabic literature and the present situation of Orientalists.

Prerequisite: ARAB 408

ARAB 412 Modern Studies in Linguistics (3 credits)
This course reviews modern Arabic schools of linguistics, especially modern Arabic philology, phonetic school, descriptive school, stylistic school, lexical and terminological school and Arabic computational school. Prerequisite: ARAB 405

Arabic Minors

The Languages and Translation Department offers two minors: one in Arabic Language and the other in Arabic Literature. These minors can be taken by students who have regular standing in any major in the University.

Students who wish to take a minor in Arabic should submit a written application to the Languages and Translation department. The minor in Arabic will appear on the student’s academic record during study and after graduation. The course requirements for each of the Arabic minors are listed below.

Arabic Language Minor

This minor encompasses six course encompassing 18 credits distributed as follows:

I. Four Required Courses encompassing 12 credit hours:

ARAB 115: Basic Arabic Syntax and Morphology
ARAB 180: Advanced Arabic Syntax
ARAB 201: Advanced Academic Writing in Arabic
ARAB 220: Arabic Sociolinguistics

II. Two Elective Courses encompassing 6 credit hours selected from the following list:

ARAB 250: Writing for the Media
ARAB 260: Arabic for Business
ARAB 320: Arabic Phonology
ARAB 360: Arabic Semantics and Lexicography
ARAB 430: Special Topics in Arabic Linguistics

Arabic Literature Minor

This minor encompasses six courses encompassing 18 credits distributed as follows:

I. Four Required Courses encompassing 12 credit hours:

ARAB 225: Early Arabic Poetry
ARAB 270: Early Arabic Prose
ARAB 300: Modern Arabic Poetry
ARAB 370: Modern Arabic Novel

II. Two Elective Courses encompassing 6 credit hours selected from the following list:

ARAB 200: Survey of Arabic Literature
ARAB 201: Advanced Academic Writing in Arabic
ARAB 250: Writing for the Media
ARAB 260: Arabic for Business
ARAB 470: Special Topics in Arabic Literature

Course Descriptions

ARAB 101 Academic Writing in Arabic (3 crs.)
This course focuses on studying the essential elements of academic writing in Arabic including effective sentences, paragraphs, essays, academic papers, professional reports, and official letters. The students are required to demonstrate high-level abilities to produce academically sound documents in Arabic.

ARAB 115 Basic Arabic Syntax and Morphology (3 crs.)
This course examines the basic elements of Arabic sentences and the word formation rules and principles. The students will be acquainted with the necessary knowledge to differentiate between grammatical and ungrammatical sentences. Students are expected to analyze different types of texts and produce adequate examples.

ARAB 180 Advanced Arabic Syntax (3 crs.)
This course builds upon the experience acquired in ARAB 115. It involves examining Arabic texts from different types of literature and analyzing them from grammatical point of view. There will be a focus on training in various methods of sentence formation and parsing. Students are expected to make presentations and participate in discussions about modern syntax theories such as transformational grammar. Prerequisite: ARAB 115.

ARAB 200 Survey of Arabic Literature (3 crs.)
This course provides a survey of Arabic literature from pre-Islamic times to modern times with an emphasis on the socio-cultural aspects of various periods. Samples of literature pieces will be studied.

ARAB 201 Advanced Academic Writing in Arabic (3 crs.)
The main focus of this course is to consolidate the students writing skills in academic activities such as note taking, summary, understanding main ideas and details, writing definitions, classifying, inferring, supporting a position, utilizing resources like internet, presenting, writing cohesive reports, conducting a research. Prerequisite: ARAB 101.

ARAB 220 Arabic Sociolinguistics (3 crs.)
This course examines language variation in Arabic as a function of geographical and social factors. The issues of language policies, multilingualism, and language and identity will also be examined in detail. Prerequisite: ARAB 115.

ARAB 225 Early Arabic Poetry (3 crs.)
This course provides a close study of pre-Islamic, early Islamic, Umayyad, and Abbasid Arabic poetry. The historical, political, and social background of the poetry of each period will be considered. Prerequisite: ARAB 115.

ARAB 250 Writing for the Media (3 crs.)
This course covers topics discussed in contemporary Arabic media. The main objective of the course is to enrich students’ contemporary vocabulary and communication skills. Focus is on discussing the characteristics of language for media, developing students’ ability to write texts in media styles, and enhancing students’ awareness of how language is used for manipulation and orientation of public opinion. Prerequisite: ARAB 115.

ARAB 260 Arabic for Business (3 crs.)
The course involves discussion of prominent issues in business relations between the Arab World and the rest of the world. The focus is on enhancing students’ vocabulary and writing skills in the realm of business including terminology, advertisement, reports, and analysis of major financial and economic events. Prerequisite: ARAB 115.

ARAB 270 Early Arabic Prose (3 crs.)
This course focuses on analyzing samples of the early Arabic prose writings such as the works of Ibn Al-Muqaffa’, Al-Jahiz and Ibn Khaldoun, how they evolved, and influenced Arabic writings in later stages. Prerequisite: ARAB 115.
ARAB 300 Modern Arabic Poetry (3 crs.)
This course involves studying and analyzing selections of modern Arabic poetry and the factors that influenced the development of Arabic poetry.

ARAB 320 Arabic Phonology (3 crs.)
This course is a study of the articulatory and acoustic features of Arabic sounds, both in Classical Arabic and modern standard Arabic. A special emphasis will be on the relationship between semantics and phonology.

ARAB 360 Arabic Semantics and Lexicography (3 crs.)
This course covers the study of meaning in Arabic by Arab grammarians and provides new insights in light of modern linguistic theories.

ARAB 370 Modern Arabic Novel (3 crs.)
The focus of this course is on the rise and development of the Arabic novel and the factors that have shaped its structure and contents. Students will read and analyze samples of works by prominent Arab novelists.

ARAB 430 Special Topics in Arabic Linguistics (3 crs.)
This course varies in content from year to year and focuses on varied topics in Arabic linguistics.

ARAB 470 Special Topics in Arabic Literature (3 crs.)
This course varies in content from year to year and focuses on varied topics in Arabic literature.
DEPARTMENT OF SOCIAL SCIENCES

Personnel

Department Chairperson Najjar, Ibrahim.
Associate Professor Narayanan, Lakshmi
Assistant Professors Abuiyada, Reem; Najjar, Ibrahim; Al Maashani, Ahmad (shared appointment with the Department of Education)
Secretary Al Shanfari, Nawal

Mission

The mission of the Social Sciences Department is to provide knowledge of the historical, social and cultural context for understanding contemporary social and psychological phenomena. The mission of social work program is to advance knowledge of social work theories and effective practices and its aim is to educate students on how to practice social work sensitively and competently with diverse, multicultural, rural/urban populations of Oman and the Arabian Gulf.

Objectives

The objectives of the department are to:

1. Provide students with solid liberal arts education, training in social work and appropriate learning and critical thinking skills and values.
2. Provide students with the skills, knowledge and ethical values that will prepare them to work competently in a range of social work settings and with a diversity of population segments that need professional social and welfare services such as children and families, the mentally or physically challenged, students with special needs at schools and institutions of higher learning, the chronically sick and elderly, criminals and other relevant environments;
3. Prepare students to practice and serve the social work needs of their society and advocate on behalf of those who are socially disadvantaged or at risk of social discrimination or exploitation both at local and national levels;
4. Prepare students for graduate studies in social work or its practice in any other related field;
5. Promote life-long independent learning.

Learning Outcomes

The program aims to produce graduates who are:

1. Understand and interpret the history and theories of the social work profession and its contemporary issues and practices.
2. Understand the moral values of the social work profession and its ethical standards and principles, and practice accordingly.
3. Appreciate the liberal arts, their historical tradition and major scientific theories.
4. Use theoretical frameworks supported by empirical evidence to understand individual development and behavior across the life span and the interactions among individuals and between individuals and families, groups, organizations, and communities.
5. Understand the forms and mechanisms of oppression and discrimination and apply strategies of advocacy and social change that promote social justice.
6. Evaluate research studies, apply sound research methodologies to social work practices, and evaluate their outcome.
7. Analyze, formulate, change, reform and influence social policies.
8. Use communication skills appropriate for different client populations, colleagues or communities.
9. Apply the knowledge and skills of social work practice in all settings.
10. Apply critical thinking skills within the context of social work profession and practice.
11. Practice with no discrimination and with respect for the dignity and the human rights of all clients.
12. Use supervision and consultation appropriate to social work practice.
13. Appreciate the value of team work and spirit within social organizations and work for harmonious necessary organizational change.

Degrees Offered

- Diploma in Social Work
- BA in Social Work

Career Opportunities

Graduating students find career opportunities:

- In public or private schools
- With social organizations
- In hospitals
- In Counseling Units
- Universities – Student Affairs Department
Diploma Program

The Diploma in Social work is a two-year, 60-credit hour program designed to offer basic but up-to-date theoretical knowledge with relevant skills and competencies in social work. The program focuses on pairing theoretical explanations with practical work in the form of realistic scenarios and research projects. In addition, the program follows a modern liberal arts approach by exposing the students to a sound knowledge of general sciences, the arts, study of the Omani culture, mastery of general computing skills, and efficient usage of Arabic and English languages.

The students who graduate with a Diploma may continue their education at a later stage and receive a Bachelor of Arts degree in social work, if they satisfy the requirements of admission to the B.A. in Social Work. All the credits that they have successfully completed in the Diploma program are transferable to the B.A. program in Social Work.

Graduation Requirements

To graduate with a Diploma in Social Work, students must satisfactorily complete 60 credit hours of course work from the courses that are described in the Program of Study with an overall minimum average of 65 percent.

Program of Study

University Requirements

This component consists of the following 7 courses encompassing 21 credit hours:

- ARAB 101: Academic Writing in Arabic
- CMPS 100A: Introduction to Technical Computing for the Arts
- ENGL 101: Basic Academic English I
- ENGL 102: Basic Academic English II
- ENGL 203: Advanced Academic English I
- MATH 103: Mathematics for Social Sciences I
- SOCS 102: Oman Society

College Requirements

This component consists of the following two courses encompassing 6 credit hours:

- One course in physical/natural sciences (3 Cr. hrs.)
- One course in humanities/social sciences: SOCS 100: World Civilizations I (3 Cr. hrs.)
Program Requirements

This component consists of eleven courses constituting of 33 credit hours distributed as follows:

Major Required Courses: This component consists of the following 9 courses constituting 27 credit hours:

- PSYC 150: Introduction to Psychology
- SOCS 150: Introduction to Sociology
- SOCS 220: Individuals, Families, and Groups
- SOWO 200: Introduction to Social Work
- SOWO 235: Communication and Interviewing Skills
- SOWO 245: Human Behavior and the Social Environment
- SOWO 255: Social Policy & Services I: An Introduction
- SOWO 280: Social Work Practice I: Assessment, Planning, and Intervention
- SOWO 290: Social Work: Field Internship I

Major Elective Courses: This component includes two courses encompassing 6 credit hours chosen from the following list:

- PSYC 180: Human Development
- PHIL 120: Introduction to Philosophy
- PHIL 160: Critical and Creative Thinking

Study Plan

<table>
<thead>
<tr>
<th>Year I</th>
<th>Semester 1 (Fall)</th>
<th>15 Credits</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CMPS 100A</td>
<td>Introduction to Technical Computing for the Arts</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Oman Society</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MATH 103</td>
<td>Mathematics for the Social Sciences I</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Semester 2 (Spring)
15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Elective (1)</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 150</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 150</td>
<td>Introduction to Sociology</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 100</td>
<td>College Requirement: Humanities/Social Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 15

College Requirement: Humanities/Social Science 3

Year II

Semester 3 (Fall)
15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Elective (2)</td>
<td>3</td>
</tr>
<tr>
<td>SOWO 200</td>
<td>Introduction to Social Work</td>
<td>3</td>
</tr>
<tr>
<td>SOWO 235</td>
<td>Communication and Interviewing Skills</td>
<td>3</td>
</tr>
<tr>
<td>SOWO 245</td>
<td>Human Behavior and the Social Environment</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 15

College Requirement: Physical/Natural Science 3

Semester 4 (Spring)
15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOCS 220</td>
<td>Individuals, Families, and Groups</td>
<td>3</td>
</tr>
<tr>
<td>SOWO 255</td>
<td>Social Policy & Services I: An Introduction</td>
<td>3</td>
</tr>
<tr>
<td>SOWO 280</td>
<td>Social Work Practice I: Assessment, Planning, and Intervention</td>
<td>3</td>
</tr>
<tr>
<td>SOWO 290</td>
<td>Social Work: Field Internship I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>College Requirement: Physical/Natural Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Completion of the Diploma in Social Work - Total Credits 60
Bachelor of Arts (BA) Program

The BA curriculum focuses on developing students’ awareness and knowledge of the social work profession, its skills, and ethical values and principles, relating that to religious heritage and rich diversity prevalent in Oman and the Arabian Gulf countries. Social work students will come to understand the influence of cultural heritage and religious/spiritual beliefs on the practice and application of their professional behavior. The Program prepares undergraduate students for entry-level generalist practitioners through the integration of classroom and field internship experience, allowing ambitious students to continue for graduate studies in social work.

Graduation Requirements

To graduate with a BA in Social Work, students must satisfactorily complete 120 credit hours of course work from the courses that are described in the Program of Study with an overall minimum average of 65 percent, and a cumulative average of 70 percent in the major courses.

Program of Study

University Requirements

This component consists of the following nine courses encompassing 27 credit hours:

- ARAB 101: Academic Writing in Arabic
- CMPS 100A: Introduction to Technical Computing for the Arts
- ENGL 101: Basic Academic English I
- ENGL 102: Basic Academic English II
- ENGL 203: Advanced Academic English I
- ENGL 204: Advanced Academic English II
- MATH 103: Mathematics for Social Sciences I
- SOCS 102: Oman Society
- SOCS 200: World Civilizations II

College Requirements

This component consists of the following four courses encompassing 12 credit hours:

- One three-credit hour course in physical/ natural sciences
- One three-credit hour course in humanities/social sciences (SOCS 100)
- Two Courses comprising six credit hours in any other major

Program Requirements

This component consists of 26 courses constituting 81 credit hours distributed as follows.
Major Required Courses: This component consists of the following 23 courses constituting 69 credit hours:

- ENGL 350: Advanced Writing for Humanities
- MATH 215: Elementary Statistics for the Social Sciences
- PSYC 150: Introduction to Psychology
- PSYC 180: Human Development
- PSYC 215: Social Psychology
- SOCS 150: Introduction to Sociology
- PHIL 230: Principles of Professional Ethics
- SOCS 220: Individuals, Families, and Groups
- SOCS 375: Communities and Organizations
- SOWO 200: Introduction to Social Work
- SOWO 235: Communication and Interviewing skills
- SOWO 245: Human Behavior and the Social Environment
- SOWO 255: Social Policy & Services I: An Introduction
- SOWO 280: Social Work: Practice I: Assessment, Planning, and Intervention
- SOWO 290: Social Work: Field Internship I
- SOWO 320: Social Policy & Services II: Delivery Systems in Oman and the Gulf
- SOWO 330: Social Work Practice II: Family and Children’s Services
- SOWO 370: Research Methods in Social Work
- SOWO 410: Social Work: Field Internship II
- SOWO 440: Social Work: Practice III: Working with Groups
- SOWO 450: Social Work Administration
- SOWO 475: Social Work in Islam
- SOWO 490: Senior Study Project

Major Elective Courses: This component includes four courses encompassing 12 credit hours chosen form the following list:

- PHIL 120: Introduction to Philosophy
- PHIL 160: Critical and Creative Thinking
- ECON 201: Microeconomics
- ECON 202: Macroeconomics
- EDUC 120: Learning and Child Development
- EDUC 355: Behavior Modification
- EDUC 360: Educational Systems in Oman and the GCC Countries
- EDUC 370: Learning Difficulties
- SOCS 310: Culture and Society in the Gulf
- SOCS 340: Social Problems
- SOCS 460: Social Change
- SOWO 300: Populations with Special Needs
- SOWO 380: Social Justice Settings
- SOWO 460: Social Work Mental Health Assessment
Study Plan

Year I

Semester 1 (Fall) 15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 100A</td>
<td>Introduction to Technical Computing for the Arts</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Oman Society</td>
<td>3</td>
</tr>
<tr>
<td>MATH 103</td>
<td>Mathematics for the Social Sciences I</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2 (Spring) 15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 150</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 160</td>
<td>Critical and Creative Thinking (Major Elective 1)</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 150</td>
<td>Introduction to Sociology</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 100</td>
<td>College Requirement (1): Humanities/ Social Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Year II

Semester 3 (Fall) 15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 180</td>
<td>Human Development</td>
<td>3</td>
</tr>
<tr>
<td>SOWO 200</td>
<td>Introduction to Social Work</td>
<td>3</td>
</tr>
<tr>
<td>SOWO 235</td>
<td>Communication and Interviewing Skills</td>
<td>3</td>
</tr>
<tr>
<td>SOWO 245</td>
<td>Human Behavior and the Social Environment</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 4 (Spring) 15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOCS 220</td>
<td>Individuals, Families, and Groups</td>
<td>3</td>
</tr>
<tr>
<td>SOWO 255</td>
<td>Social Policy & Services I: An Introduction</td>
<td>3</td>
</tr>
<tr>
<td>SOWO 280</td>
<td>Social Work Practice I: Assessment, Planning, and Intervention</td>
<td>3</td>
</tr>
<tr>
<td>SOWO 290</td>
<td>Social Work: Field Internship I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>College Requirement (2): Physical/Natural Science</td>
<td>3</td>
</tr>
</tbody>
</table>
Year III

<table>
<thead>
<tr>
<th>Semester 5 (Fall)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
</tr>
<tr>
<td></td>
<td>College Requirement (3)</td>
</tr>
<tr>
<td>PSYC 215</td>
<td>Social Psychology</td>
</tr>
<tr>
<td>SOWO 320</td>
<td>Social Policy & Services II: Delivery Systems in Oman and the Gulf</td>
</tr>
<tr>
<td>SOWO 330</td>
<td>Social Work Practice II: Family and Children’s Services</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6 (Spring)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>ENGL 350</td>
<td>Advanced Writing for Humanities</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilizations II</td>
</tr>
<tr>
<td>SOWO 370</td>
<td>Research Methods in Social Work</td>
</tr>
<tr>
<td>MATH 215</td>
<td>Elementary Statistics for the Social Sciences</td>
</tr>
<tr>
<td>PHIL 120</td>
<td>Introduction to Philosophy (Major Elective (2))</td>
</tr>
</tbody>
</table>

Year IV

<table>
<thead>
<tr>
<th>Semester 7 (Fall)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>SOCS 375</td>
<td>Communities and Organizations</td>
</tr>
<tr>
<td>SOWO 410</td>
<td>Social Work: Field Internship II</td>
</tr>
<tr>
<td>SOWO 440</td>
<td>Social Work Practice III: Working with Groups</td>
</tr>
<tr>
<td>PHIL 230</td>
<td>Principles of Professional Ethics</td>
</tr>
<tr>
<td></td>
<td>Major Elective (3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8 (Spring)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>SOWO 450</td>
<td>Social Work Administration</td>
</tr>
<tr>
<td>SOWO 475</td>
<td>Social Work in Islam</td>
</tr>
<tr>
<td>SOWO 490</td>
<td>Senior Study Project</td>
</tr>
<tr>
<td></td>
<td>Major Elective (4)</td>
</tr>
<tr>
<td></td>
<td>College Requirement (4)</td>
</tr>
</tbody>
</table>

Completion of the BA in Social Work - Total Credits 120
Course Descriptions

Philosophy

PHIL 120 Introduction to Philosophy (3 crs.)
This course raises some of the initial questions posed by the early Greek philosophers regarding the world: What is its origin? What is it made of? What is the soul? Is it immortal? What is the relationship between mind and body? What are the moral values, like freedom and justice? How do we know them? What is good? What is the truth? The answers given to these questions by Greek philosophers are examined in light of Islamic philosophy.

PHIL 160 Critical and Creative Thinking (3 crs.)
Explores critical thinking, explaining how various philosophical schools deal with the concepts of mind, reason, critical thinking, problem solving, logical reasoning, creative thinking, logical and textual analyses, formal and informal fallacies and certainty in knowledge. Students will develop understanding of the critical and creative thinking processes and will learn to think more clearly, insightfully and effectively.

PHIL 230 Principles of Professional Ethics (3 crs.)
Deals with the meaning and authenticity of ethical life; raises issues of working in a professional environment such as: what does it mean to be a professional? What moral qualities should professionals have? What are their rights and responsibilities? How to balance one’s professional responsibilities with the interests of the clients and the community? Students will be exposed to various ethical theories in order to develop an ethical perspective that makes them morally responsible professionals.

Psychology

PSYC 150 Introduction to Psychology (3 crs.)
An introduction to the principles, concepts and theories of psychology with an overview of the various psychological approaches to human behavior; Explores diverse fields in psychology such as social, cognitive, abnormal, clinical, educational, and neuropsychological.

PSYC 180 Human Development (3 crs.)
An overview of the psychology of development - cognitive, linguistic, emotional, and physical - from the prenatal period to adulthood; Examination of the nature of intelligence, learning, behavior management, and the influence of heredity and environment.

PSYC 215 Social Psychology (3 crs.)
A brief survey of social psychological theory and research; Exploration of the subjects of attitudes, intra-group and inter-group relations, social perception, and group conformity processes.
Sociology

SOCS 100 World Civilizations I (3 crs.)
Survey of the main features of ancient Near Eastern, Medieval and World Civilizations from the Mesopotamian civilization circa 3500 B.C. till the Renaissance in Europe around 1400 A.D. May be offered in Arabic.

SOCS 102 Omani Society (3 crs.)
A brief survey of the history of the Sultanate of Oman, both ancient and contemporary; examines current features of Omani society, notably its social structure, social groups, culture, languages, customs, and the process of social change and community development. May be offered in Arabic.

SOCS 110 History of Arab-Islamic Civilization (3 crs.)
This course studies the intellectual and scientific developments of Arab Islamic Civilization and the transformations it has undergone, beginning with the late Pre-Islamic period up to the end of the Abbasid Caliphate.

SOCS 150 Introduction to Sociology (3 crs.)
An introduction to the study of human behavior; Exploration of the basic sociological concepts and theories, social groups, and critical social institutions; and Examination of the relationship between structure and change in society.

SOCS 200 World Civilizations II (3 crs.)
Studies some current world issues; such as globalization and its economic impact on the world market, climate change, biodiversity, genetic engineering, world population, immigration and illegal migration, urbanization and poverty. Prerequisite: ENGL 203.

SOCS 210 Contemporary World Issues (3 crs.)
Deals with Contemporary World social problems such as environment, nuclear war threat, economical development, and poverty...etc. These issues will be studied with special emphasis on developing countries including the Arab World.

SOCS 220 Individuals, Families, and Groups (3 crs.)
Exploration of various perspectives of individuals, families, and social groups and their implications for social work; Examination of the generalist social work practice model, theories of human behavior and the social environment including ecological/systems, well-being, stress, coping, adaptation, and the concepts of risk, crisis, and protective factors.

SOCS 310 Culture and Society in the Gulf (3 crs.)
A study of contemporary societies in the Arab Gulf countries with special emphasis on the Sultanate of Oman; Examination of the social structures, social groups, cultural patterns, and processes of cultural and social change.

SOCS 340 Social Problems (3 crs.)
Examination of social problems and forms of social disorganization from a sociological perspective; such as poverty, aging, marital dissolution, orphanage,
child abuse, adolescent delinquency, substance abuse, crime, and suicide.

Prerequisite: SOCS 150.

SOCS 375 Communities and Organizations (3 crs.)
Examination of the diversity of social systems relating to organizations and communities and the ways in which they impact individuals, families, and social groups; Studies how the nature of organizations and communities and the environment may influence the direction and extent of social interaction in the society. **Prerequisite:** SOCS 150.

SOCS 460 Social Change (3 crs.)
Introduces students to the dimensions of social change and the main theoretical approaches; Changes in cultural and social systems of the rural and urban areas and their influence in the development programs; Demographic structures, patterns of conflict, cooperation, and social problems. **Prerequisite:** SOCS 150.

Social Work

SOWO 200 Introduction to Social Work (3 crs.)
An introduction to social work as a profession; Explores the role of social work and the knowledge, values and skills required to practice it within a generalist social work model, practice skills and theoretical frameworks; the interaction between human behavior and the social environment, the intersection of culture, religion and spirituality in the helping process.

SOWO 235 Communication and Interviewing Skills (3 crs.)
Introduces students to the patterns and elements of the communication process; Practical training in dealing with people and interviewing skills which are critical for the success of holders of degrees in social work. **Prerequisite:** SOCS 150.

SOWO 245 Human Behavior and the Social Environment (3 crs.)
This course introduces ecological/systems theory as an umbrella for the generalist practice model; focuses on the reciprocal relationships between human behavior and social environments; the interaction between and among individuals, groups, societies and economic systems; Issues of values, ethics, religion, spirituality, and diversity; social and economic justice as they impact populations in the Arab Gulf are infused throughout the course. **Prerequisites:** PSYC 150 and SOCS 150.

SOWO 255 Social Policy & Services I: An Introduction (3 crs.)
Social welfare as an institution; response to human and societal needs presented from a global, national and local perspectives; Exposition of policy frameworks and their applications to the study of policy and the social and economical institutions that shape social welfare; awareness of the role of social work in policy advocating and formulation and improvement of social welfare services in Oman, and the Arab Gulf countries. **Prerequisite:** SOWO 200 and ENGL 203.
SOWO 280 Social Work Practice I: Assessment, Planning, and Intervention (3 crs.)
As the first of a three courses in the generalist practice sequence, it introduces the student to social casework and the problem solving model for schools and health care settings. Students gain beginning level skills in assessment, intervention, evaluation, termination with individual, children and families and the professional use of self. This course emphasizes the cultural, religious and spiritual strengths of the diverse populations in Oman and the Arab Gulf countries. Prerequisites: SOWO 200, SOWO 235 and SOWO 245.

SOWO 290 Social Work: Field Internship I (3 crs.)
This is the first of two practical training courses that require 12 hours of field work per week under the guidance of professional instructors. Students are placed in a relevant institution in order to acquire practical experience in applying the principles and skills they have learned in other Social Work courses. Prerequisites: SOWO 200, SOWO 235, SOWO 245, and SOWO 255. Co-requisite: SOWO 280.

SOWO 300 Populations with Special Needs (3 crs.)
Dealing with various social categories that have special needs such as children with mental retardation, learning disabilities, physically challenged individuals, hearing and visual impairment. It discusses the nature of the needs of each of these categories, assessments, interventions, and the appropriate social welfare services that can be extended to them and to older people. Prerequisites: PSYC 150.

SOWO 320 Social Policy & Services II: Delivery Systems in Oman and the Gulf (3 crs.)
The second of two social policy and services sequence this course builds on the knowledge and skills gain in SOWO 255 and with added emphasis on the knowledge, values and skills necessary for conducting policy analysis. Focus is on the methodology for understanding and analyzing social welfare policies and services as they impact citizens of Oman and the Arab Gulf countries. Prerequisite: SOWO 255, SOWO 280, SOWO 290, and ENGL 204.

SOWO 330 Social Work Practice II: Family and Children’s Services (3 crs.)
The second course in the sequence of three practice courses expands the generalist practice model through the use of theory, knowledge, research, values, ethics, and skills for generalist social work practice with groups, individuals and families. Content on values, ethics, diversity, social and economic justice, religion, spirituality, empowerment, and the professional use of self are infused throughout the course. Special attention is given to the diverse populations of Oman and the Arab Gulf countries. Prerequisite: SOWO 280, SOWO 290.

SOWO 370 Research Methods in Social Work (3 crs.)
Introducing a students to a variety of research methods in social sciences and enables them to practice social research and to critically evaluate published
research work. Students learn how to link sociological theory with research methods. Prerequisite: MATH 215, SOCS 150, and ENGL 204.

SOWO 380 Social Justice Settings (3 crs.)
Social work with delinquents, criminals, criminal law, and crime-related institutions this course surveys a variety of social justice settings with special emphasis on those of the Arab Gulf.

SOWO 410 Social Work: Field Internship II (3 crs.)
This is the second and final practical training course that requires 16 hours of field work per week. After completing SOWO 290, students are given more complicated tasks in order to enrich their experience in social work practice. Prerequisite: SOWO 290, SOWO 330.

SOWO 440 Social Work Practice III: Working with Groups (3 crs.)
As the last course in the three course generalist social work practice sequence, it expands the problem solving model to focus on the strengths, capacities, and resources of large groups, organizations, and communities in relation to the broader environments. Students strengthen their skills in implementing the generalist social work practice model to include leadership, assessment of large systems; applying empirical knowledge and technological advances; developing, analyzing, and advocating for policies and services. Content on values, religion, spirituality, ethics, diversity, social and economic justice are infused throughout the course. Special attention is given to Oman and the Arab Gulf countries. Prerequisites: SOWO 290, SOWO 330.

SOWO 450 Social Work Administration (3 crs.)
Examines the organization and management social service agency settings including system and environmental influences, leadership, communication, organization behavior, team development, organization design, evaluation, productivity, supervision, and performance evaluation. Prerequisites: SOWO 290, SOWO 330.

SOWO 460 Social Work Mental Health Assessment (3 crs.)
This course will enhance students practice in mental health assessment using Play Therapy, Art Therapy, grief and loss, Brief Psychosocial Therapy approaches. Students will gain skills in the application and assessment using appropriate therapy interventions with children, adolescents and adults. Prerequisite: SOWO 290 and SOWO 330.

SOWO 475 Social Work in Islam (3 crs.)
Examination of the principles of social work according to Islamic Shari’a Law and surveying the history of social welfare services in various Islamic societies. Basic social work principles in working with Muslims are presented.
SOWO 490 Senior Study Project (3 crs.)
In this course, the fourth year student brings together a variety of theoretical and technical skills that acquired over four years by writing a research paper on a social work topic of interest in consultation with the instructor. Prerequisite: SOWO 370, SOWO 440, and ENGL 350. Co-requisite: SOWO 410, SOWO 475, SOWO 450.
MATHEMATICS AND SCIENCES UNIT

Personnel

Unit Chairperson Rawashdeh, Edris.
Associate Professors Rawashdeh, Edris; Abo Hassan, Khedr; Ul-Hassan, Israr; Gondal, Muhammad Asif.
Assistant Professors Siddiqui, Sabir Ali; Woerner, Edwin.
Lecturer Abdelkarim, Raed.
Laboratory Technicians Tabidi, Mohammed Abdul; Yousri, Mohammed.
Secretary Al Shanfari, Nawal.

Mission

The mission of the Mathematics and Sciences Unit is to provide the university community with theoretical and practical experience in mathematics and the sciences. This experience can be applied to other academic disciplines, teaching, or professional fields. The Unit works to provide its students with the background and critical thinking skills required for life-long learning in mathematical and scientific areas.

Objectives

The objectives of the Mathematics and Sciences Unit are to:

- Meet the interests and career goals of students by offering them a flexible program in mathematics that would lead to having either a bachelor of arts or a bachelor of science in mathematics;
- Provide undergraduate chemistry and physics majors with a strong theoretical and experimental education in preparation for careers in academia, industry, or graduate studies;
- Prepare students for graduate study in basic or applied research, in mathematics, physics, chemistry, and related fields;
- Prepare students for careers that demand the use of mathematics and sciences such as teaching, and careers that require the use of mathematics and sciences;
- Help students develop as rounded individuals by structuring the program within a liberal arts education framework where students are exposed to different fields of knowledge, including literature, philosophy, education, and the arts;
- Provide students with solid liberal education, training and appropriate learning skills and values; and
- Promote life-long independent learning.

143
Learning outcomes

The learning outcomes for the Mathematics and Sciences Unit are to:

- Provide a knowledge of the important theorems and techniques in pre-calculus and calculus mathematics;
- Provide knowledge of the theory and applications of ideas in physics, chemistry, and biology;
- Provide experience with laboratory techniques in the sciences;
- Provide knowledge and experience in statistics and its applications;
- Introduce and provide practice for important applications of mathematical and scientific theory;
- Provide a background in advanced mathematics theory and practice, in areas of computing and numerical analysis, abstract algebra, mathematical analysis.

Degrees Offered

- Diploma in Mathematics
- BS in Mathematics

Career Opportunities

Graduates with a degree in Mathematics may find employment in many sectors, mainly Mathematics teachers, Industry, commerce, government departments, and so on.
Diploma Program in Mathematics

Overview

The Diploma in Mathematics is a two-year, 62 credit hours study program designed to equip its holders with adequate knowledge, skills, and competencies in mathematics and statistical analysis. The program focuses on pairing theoretical explanations with practical work in the form of problem solving and projects. In addition, the program follows a modern liberal arts approach by exposing the students to a sound knowledge of general sciences, the arts, study of the Omani culture, mastery of general computing skills, and efficient usage of Arabic and English languages.

Although the Diploma holders may exit the university education with this degree, they will also have opportunities to continue their education to complete Bachelor of Science (BS) degree in Mathematics if they satisfy the requirements for admission to the BS in Mathematics programs, then all the credits that are successfully completed in the Diploma program are transferable to the BS programs.

Graduation Requirements

To graduate with the Diploma in Mathematics, students must satisfactorily complete 60 credit hours of course work from the courses that are described in the Program of Study with an overall minimum average of 65 percent.

Program of Study

University Requirements

This component consists of the following nine courses encompassing 27 credit hours:

- ARAB 101: Academic Writing in Arabic
- CMPS 100B: Introduction to Technical Computer for the Sciences
- ENGL 101: Basic Academic English I
- ENGL 102: Basic Academic English II
- ENGL 203: Advanced Academic English I
- ENGL 204: Advanced Academic English II
- MATH 199: Calculus I
- SOCS 100: World Civilizations I
- SOCS 102: Oman Society

College Requirements

This component consists of a one, 3-credit hour course in any other majors (Highly Recommended CMPS 110).
Program Requirements

This component consists of the following twelve courses encompassing 32 credit hours:

- CHEM 130: Chemical Principles I
- CHEM 130L: Introductory Chemistry Laboratory
- MATH 120: Geometry and Trigonometry
- MATH 200: Calculus II
- MATH 205: Calculus III
- MATH 210: Differential Equations
- MATH 240: Mathematics Computer Applications I
- MATH 250: Probability and Statistics
- MATH 255: Statistical Inference
- MATH 260: Numerical Analysis
- PHYS 170: Fundamentals of Physics I
- PHYS 170L: Introductory Physics Laboratory

Study Plan

<table>
<thead>
<tr>
<th>Year I</th>
<th>Semester 1 (Fall)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 100B</td>
<td>Introduction to Technical Computing for the Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 199</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 100</td>
<td>World Civilizations I</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year I</th>
<th>Semester 2 (Spring)</th>
<th>17 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>CHEM 130</td>
<td>Chemical Principles I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 130L</td>
<td>Introductory Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 200</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 170</td>
<td>Fundamentals of Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 170L</td>
<td>Introductory Physics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year II</th>
<th>Semester 3 (Fall)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 205</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>MATH 250</td>
<td>Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 240</td>
<td>Mathematics Computer Applications I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General Elective *</td>
<td>3</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 210</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 255</td>
<td>Statistical Interference</td>
<td>3</td>
</tr>
<tr>
<td>MATH 260</td>
<td>Numerical Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 120</td>
<td>Geometry and Trigonometry</td>
<td>3</td>
</tr>
</tbody>
</table>

Completion of the Diploma In Mathematics - Total Credits 62

* A course in programming, Computer Science CMPS 110, is highly recommended for Mathematics major.
Bachelor of Science Program in Mathematics

Overview

The degree of BS in Mathematics is a four-year, 120-121 credit hours study program designed to offer high quality teaching that promotes critical thinking and problem-solving skills in a variety of subjects and through related disciplines. It provides fundamental background knowledge and expertise for study in engineering and sciences.

Graduation Requirements

To graduate with a BS in Mathematics, students must satisfactorily complete 120 credit hours of course work from the courses that are described in the Program of Study with an overall minimum average of 65 percent, and a cumulative average of 70 percent in the major courses.

Program of Study

University Requirements

This component consists of the following ten courses encompassing 30 credit hours:

- ARAB 101: Academic Writing in Arabic
- CMPS 100B: Introduction to Technical Computing for the Sciences
- ENGL 101: Basic Academic English I
- ENGL 102: Basic Academic English II
- ENGL 203: Advanced Academic English I
- ENGL 204: Advanced Academic English II
- MATH 199: Calculus I
- SOCS 100: World Civilizations I
- SOCS 102: Oman Society
- SOCS 200: World Civilizations II

College Requirements

This component consists of the following four courses encompassing 12 or 13 credit hours:

- One courses in physical/ natural sciences electives (3-4 Cr. hrs.)
- One course in humanities/ social sciences electives (3 Cr. hrs.)
- Two courses in any other majors (6 Cr. hrs.)
Program Requirements

This component consists of a 26 courses constituting 79 credit hours distributed as follows.

Major Required Courses: This component consists of the following 19 courses constituting 58 credit hours:

- CHEM 130: Chemical Principles I
- CHEM 130L: Introductory Chemistry Laboratory
- CHEM 170: Chemical Principles II
- MATH 120: Geometry and Trigonometry
- MATH 200: Calculus II
- MATH 205: Calculus III
- MATH 210: Differential Equations
- MATH 240: Mathematics Computer Applications I
- MATH 250: Probability and Statistics
- MATH 255: Statistical Inference
- MATH 260: Numerical Analysis I
- MATH 305: Advanced Calculus
- MATH 320: Linear Algebra I
- MATH 360: Linear Algebra II
- MATH 370: Discrete Mathematics
- MATH 375: Topics in Statistics
- MATH 380: Numerical Analysis II
- MATH 410: Number Theory
- MATH 435: Topology
- MATH 440: Real Analysis

Major Electives: This component includes seven course encompassing 21 credit hours chosen form the following list:

I. Three Mathematics Elective course encompassing 9 credit hours chosen from the following list:

- MATH 280: Mathematics Computer Applications II
- MATH 335: Mathematics for Science and Engineering
- MATH 345: Topics in Geometry
- MATH 365: Fourier Series and Partial Differential Equations
- MATH 375: Topics in Statistics
- MATH 380: Numerical Analysis II
- MATH 390: Differential Equations II
- MATH 410: Number Theory
- MATH 435: Topology
- MATH 440: Real Analysis
II. Four supporting major elective courses encompassing 12 credit hours chosen from the following list:

- ACCT 101: Financial Accounting I
- ACCT 102: Financial Accounting II
- ACCT 260: Intermediate Accounting I
- CHEM 100: Chemistry for the Arts
- CHEM 210: Organic Chemistry I
- CHEM 250: Organic Chemistry II
- CHEM 260: Analytical Chemistry
- CHEM 280: Environmental Chemistry
- ECON 201: Microeconomics
- ECON 202: Macroeconomics
- ECON 310: International Economics
- ENGL 280: Business English
- FINA 201: Business Finance I
- FINA 202: Business Finance II
- FINA 260: Money and Capital Markets
- FINA 265: Financial Institutions
- FINA 270: Commercial Banking
- MATH 204: Mathematics for Social Sciences II
- MATH 280: Mathematics Computer Applications II
- MKTG 101: Principles of Marketing
- MKTG 260: Service Marketing
- MKTG 265: Marketing Communications
- MNGT 201: Management I
- MNGT 202: Management II
- MNGT 260: Entrepreneurship and Small Business Management
- MNGT 265: Human Resource Management
- MNGT 270: Organization Behavior
- PHYS 100: Physics for the Arts
Study Plan

Year I

Semester 1 (Fall) 15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 100B</td>
<td>Introduction to Technical Computing for the Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 199</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 100</td>
<td>World Civilizations I</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2 (Spring) 17 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 130</td>
<td>Chemical Principles I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 130L</td>
<td>Introductory Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 200</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 170</td>
<td>Fundamentals of Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 170L</td>
<td>Introductory Physics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MATH 240</td>
<td>Mathematics Computer Applications I</td>
<td>3</td>
</tr>
</tbody>
</table>

Year II

Semester 3 (Fall) 15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 205</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>MATH 250</td>
<td>Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
<td>3</td>
</tr>
<tr>
<td>General Elective*</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Semester 4 (Spring) 15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 210</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 255</td>
<td>Statistical Interference</td>
<td>3</td>
</tr>
<tr>
<td>MATH 260</td>
<td>Numerical Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 120</td>
<td>Geometry and Trigonometry</td>
<td>3</td>
</tr>
<tr>
<td>Year III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester 5 (Fall)</td>
<td>16 Credits</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>MATH 305</td>
<td>Advanced Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 320</td>
<td>Linear Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 210</td>
<td>Fundamental of Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 210L</td>
<td>Physics Lab II</td>
<td>1</td>
</tr>
<tr>
<td>Major Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Major Elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Semester 6 (Spring)	15 Credits	
Code	**Course Title**	**Credit Hours**
CHEM 170	Chemical Principals II	3
MATH 360	Linear Algebra II	3
MATH 370	Discrete Mathematics	3
SOCS 200	World Civilizations II	3
Major Elective	3	

<table>
<thead>
<tr>
<th>Year IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 7 (Fall)</td>
</tr>
<tr>
<td>Code</td>
</tr>
<tr>
<td>MATH 415</td>
</tr>
<tr>
<td>Major Elective</td>
</tr>
<tr>
<td>Major Elective</td>
</tr>
<tr>
<td>Physical and Natural Sciences Elective</td>
</tr>
<tr>
<td>General Elective</td>
</tr>
</tbody>
</table>

Semester 8 (Spring)	13 Credits	
Code	**Course Title**	**Credit Hours**
MATH 470	Complex Analysis	3
MATH 490	Mathematics Seminar	1
Major Elective	3	
Major Elective	3	
Humanities and Social Science Elective	3	

Completion of the BS in Mathematics - Total Credits 121-122

* A course in programming, Computer Science CMPS 110 is highly recommended for Mathematics majors.
Mathematics

MATH 103 Mathematics for Social Sciences I (3 crs.)
Factorization of polynomials, second degree equations, equations for straight lines, inequalities, systems of linear equations, Gaussian elimination, curve plotting, derivatives, maxima and minima, limits, algebra of exponents, the exponential and logarithmic functions. The emphasis is on applications. Note: This course may not be used as an elective for Diploma or BS in Mathematics.

MATH 120 Geometry and Trigonometry (3 crs.)
Coordinate systems, distances, Pythagorean Theorem, vectors and vector operations, transformations (symmetry, reflections, etc.) analytic geometry (circles, ellipses, parabolas, etc.), areas and volumes. Exponential and logarithm function: Properties, graphs, and equations. Trigonometry: Radian measure, trigonometric functions and inverse functions, graphs, identities, equations, applications (law of sines and law of cosines), trigonometric form for complex numbers (De Moivre’s Theorem), hyperbolic functions.

MATH 199 Calculus I (3 crs.)
Calculus of one variable: limits, continuity, differentiation, chain rule, maxima and minima, curve plotting, Rolle’s theorem, integration by substitution, definite integrals with applications to areas, volumes and arc length, fundamental theorem of integral calculus, exponential and logarithmic functions, trigonometric functions, parametric equations.

MATH 200 Calculus II (3 crs.)
Methods of integration, inverse trigonometric functions, limits, sequences and series, tests for convergence, Taylor approximations, and Taylor series. Polar coordinates. Prerequisite: MATH 199.

MATH 204 Mathematics for Social Sciences II (3 crs.)
Continuation of MATH 103 where the emphasis is on applications. Determinants, matrix inversion, combinations, introduction to probability, methods of integration, approximations of definite integrals, differential equations, multivariable functions, partial derivatives, chain rule, optimization of bivariate functions. Prerequisite: MATH 199 or MATH 103.

MATH 205 Calculus III (3 crs.)
Multivariable Calculus: Partial derivatives, directional derivatives, chain rule, tangent planes, maxima and minima, Lagrange multipliers, cylindrical and spherical coordinates, multiple integrals, substitutions, line and surface integrals. Theorems of Green, Gauss and Stokes. Prerequisite: MATH 200.

MATH 210 Differential Equations (3 crs.)
First-order differential equations, linear differential equations of second and higher order, homogenous and non-homogenous with constant coefficients,
power series solutions, Bessel functions and Legendre polynomials, Laplace transforms, and initial value problems. **Prerequisite: MATH 200.**

MATH 215 Elementary Statistics for the Social Science (3 crs.)
Organizing Data; Standard deviation, variance, mean deviation and coefficient of variation. Correlation and Regression Analysis. Multiple and partial correlation. Regression Lines, Test of Significance: Hypotheses, level of significance, tests for significance. Credits can be awarded for only one course of either MATH 215 or MATH 250.

MATH 240 Mathematics Computer Applications I (3 crs.)
This course is a hands-on course intended for students from various disciplines who are using MATLAB for the first time and have little or no experience in computer programming. Knowledge of elementary linear algebra concepts is assumed. The course focuses mainly on teaching students the foundations of MATLAB. Major topics of the course include: Introduction to MATLAB, Arrays, Script files, 2D-plotting, function files, initiation to programming with MATLAB. **Prerequisite: MATH 103 or MATH 199.**

MATH 250 Probability and Statistics (3 crs.)

MATH 255 Statistical Inference (3 crs.)
Sampling and sampling distributions: Chi-square distribution, t-distribution. Point and interval estimation; Unbiasedness, consistency, efficiency and maximum likelihood estimation, method of moments, minimum variance unbiased estimator. Testing of Hypothesis: Neyman-Pearson lemma. Test of significance: Paired t-test, Chi-Square tests and F-test. **Co-requisite: MATH 250 or consent of instructor.**

MATH 260 Numerical Analysis I (3 crs.)
Programming for numerical calculations, round off errors, solutions of equations by iteration, interpolation methods, numerical integration, and numerical methods for ordinary differential equations: first order methods, multi-step methods, and boundary value problem. Solutions of ordinary differential equations, and Monte-Carlo methods, implementations and analysis of algorithms, and projects using MATLAB or a similar tool. **Prerequisites: MATH 210, and (CMPS 110, or MATH 240), Co-requisite: MATH 240, or CMPS 110.**

MATH 280 Mathematics Computer Applications II (3 crs.)
This is a hands-on course for students with some experience using MATLAB, or who have taken the MATH 240 course; assuming no or little background in programming. Major topics of the course include: Accessing data, programming with MATLAB (loops and conditional control statements), how to use polynomials in MATLAB, 3-D Plots, and application of MATLAB in numerical
analysis, and some techniques for improving performance. Prerequisite: MATH 240 or CMPS 110 or co-requisite: EECE 130.

MATH 305 Advanced Calculus (3 crs.)
A rigorous and proof-motivated study of the foundations of differential and integral calculus. Definition of a limit, and application of the definition to functions of a real variable. Continuous functions, derivatives and integrals. Introduction to point-set topology, compact sets. Prerequisite: MATH 200.

MATH 320 Linear Algebra I (3 crs.)
Systems of linear equations, Gaussian elimination, matrices, determinants, inverse, introduction to vector spaces, subspaces and dimension, rank and nullity, eigenvalues and eigenvectors, linear transformations and matrices, similar matrices, inner products, orthogonal projection, least squares approximation, and orthogonal diagonalization.

MATH 335 Mathematics for Science and Engineering (3 crs.)
A course that covers linear algebra: Vector spaces, linear transformations and matrices, determinants, rank and inverse, systems of linear equations, eigenvalue and eigenvector analysis, and generalization of linear systems to include differential equations. Partial differential equations, classification, methods of variable separation, applications to the wave equations, heat equation, and Laplace and Poisson equations. Prerequisites MATH 205 and MATH 210.

MATH 345 Topics in Geometry (3 crs.)
Topics include: Isometries of Euclidean plane, two-dimensional crystallography, inversive geometry, affine geometry, projective geometry, Desargues theorem, hyperbolic geometry, differential geometry of curves and surfaces: Frenet formulas, differential forms, Gaussian and mean curvatures, normal curvature, isometries, geodesics, and Gauss-Bonnet theorem. Prerequisites: (MATH 205 and MATH 320), or MATH 335.

MATH 360 Linear Algebra II (3 crs.)
A deeper study of vector spaces, linear transformations, rank-nullity theorem, determinants, eigenvalue theory. Minimal polynomial, primary decomposition, diagonalization, triangulation, rational and Jordan canonical forms. Inner product spaces, self-adjoint and unitary operators, normal operators, the spectral theorem, positive symmetric matrices, and bilinear forms. Prerequisite: MATH 320 or MATH 335.

MATH 365 Fourier Series and Partial Differential Equations (3 crs.)
Fourier series of a function, convergence theorems, half-range expansions, Fourier integrals, Fourier transform, complete orthonormal systems, Parseval’s identity. Partial differential equations: methods of variable separation, hyperbolic, parabolic and elliptic equations, wave equation, heat equation, and Laplace equation, solution by Fourier and Laplace transforms. Prerequisites: MATH 210, MATH 305, and MATH 320.
MATH 370 Discrete Mathematics (3 crs.)
Logical reasoning, sets, relations and functions, modular arithmetic, mathematical induction, recurrence relations, counting methods, inclusion-exclusion, binomial theorem, elementary probability, introduction to graphs and trees, recursive algorithms, and some Boolean algebra.

MATH 375 Topics in Statistics (3 crs.)

MATH 380 Numerical Analysis II (3 crs.)

MATH 390 Differential Equations II (3 crs.)

MATH 410 Number Theory (3 crs.)
Divisibility, congruence equations, quadratic reciprocity, numerical functions, some Diophantine analysis, binary quadratic forms, continued fractions, Pell’s equation. Prerequisite: MATH 320 or MATH 335.

MATH 415 Abstract Algebra I (3 crs.)
Groups, subgroups, homomorphisms, normal subgroups and quotient groups, permutation groups, orbits and stabilizers, Cauchy’s theorem. Rings and fields, ideals, homomorphisms and quotient rings, maximal and prime ideals, ring of polynomials, non-commutative examples. Prerequisite: MATH 320 or MATH 335.

MATH 435 Topology (3 crs.)
Topological Spaces, subspaces, continuous mappings, separation axioms, compactness, connectedness, metric spaces, and finite product spaces. Prerequisite: MATH 305.

MATH 440 Real Analysis (3 crs.)
Metric spaces, vector analogues of the mean value theorem, Weistrass-Bolzano Theorem and Heine-Borel Theorem, differential calculus in Rn,
differentiation, the inverse and implicit function theorems, divergence, curl, differential forms, Stokes’ Theorem, Lebesgue integration on the line, comparison of Lebesgue and Riemann integrals, L2 functions. Prerequisite: MATH 305.

MATH 455 Abstract Algebra II (3 crs.)
Topics on groups, rings and fields not covered in MATH 415, including the Sylow theorems and their applications to group theory, abelian groups, Euclidean domains, algebraic field extensions, and constructions by compass and ruler, splitting fields, classification of finite fields, solvability of equations by radicals, Galois Theory. Prerequisite: MATH 415.

MATH 470 Complex Analysis (3 crs.)
Analytic functions of a complex variable, Cauchy-Riemann equations, harmonic functions, complex integration, Cauchy’s integral theorem, Taylor series, trigonometric functions, Laurent series, singularities and zeroes, the residue theorem and contour integration with applications to real integrals. Prerequisite: MATH 305.

MATH 475 Set Theory (3 crs.)
Uncountable sets, ordered and well-ordered sets, equivalent forms of the axiom of choice such as well-ordering and Zorn’s Lemma, transfinite induction, arithmetic with cardinal numbers, generalized continuum hypothesis, ordinal numbers.

MATH 490 Mathematics Seminar (1 crs.)
A written report and oral presentation in the form of a seminar about a current topic in Mathematics.

Biology

BIOL 100 Biology for the Arts (3 crs.)
This is an introductory course which covers major biological principles and concepts. Topics include basic cells and its organelles, properties of water, organs and organ systems, genetics, DNA and RNA, and a look at emerging diseases in modern times for non science majors. This course emphasizes the significance of fundamental biological principles and methodologies in the real world.

BIOL 120 Introductory Biology (3 crs.)
An introduction to biological principles at the ecosystem, population, organism and organ system level using an investigative and problem-based approach. Exploration of cellular processes including metabolism and inheritance from an evolutionary perspective in an investigative, problem-based format.

BIOL 120L Introductory Biology Lab (1 cr.)
Weekly introductory lab sessions for Biology, which includes an introduction to biological principles covering the material taught in BIOL 120. Prerequisite or co-requisite: BIOL 120.
Diploma in Chemistry

(2 years – 62 credit hours)

Overview:

The Diploma in Chemistry is a two-year study program designed to equip its holders with adequate theoretical knowledge of chemistry as a science and effective practical entry level of skills in the field of chemistry. The program focuses on pairing theoretical explanations with practical work in actual chemistry labs. In addition, it follows a modern liberal arts approach by exposing the students to a sound knowledge of general sciences, the arts, study of the Omani culture, mastery of general computing skills, and efficient usage of Arabic and English languages.

Although the Diploma holders may exit the university education with this degree, they will also have opportunities to continue their education to complete a Bachelor of Science degree in Chemistry if they satisfy the requirements for admission to the B.S. in Mathematics program, then all the credits that are successfully completed in the Diploma program are transferable to the B.S. program.

Admission Requirements:

Admission to the Diploma in Chemistry requires the students:

- To have a General Secondary School Certificate or equivalent.
- To take placement tests to determine their levels in Arabic, English, Mathematics and Information Technology skills.

Graduation Requirements:

To graduate with a Diploma in Chemistry, students must satisfactorily complete 63 credit hours of course work from the courses that are described in the Program of Study with an overall minimum average of 65 percent.

Learning Outcomes:

With the successful completion of the Diploma in Chemistry program, students should have shown evidence of learning in the following areas:

Knowledge:

1. Understanding the underlying concepts and principles associated with chemistry, combining depth and breadth of study across current knowledge in the disciplines;
2. Acquiring appropriate methods of acquiring, interpreting and analyzing scientific data and information;
3. Demonstrating the manipulative skills necessary to carry out scientific investigations with precision and safety;

4. Familiarity with the scientific terminology, classification systems, conventions and units appropriate to chemistry;

5. Carrying out debate using informed knowledge to evaluate different lines of evidence; and

6. Awareness of the limits of current scientific knowledge in chemistry; and

7. Awareness of the importance of cooperation, and team work in the scientific fields, and the nature of science.

Cognitive Skills:

1. Using and applying knowledge and understanding of essential facts, concepts, principles and theories relating to chosen areas in chemistry;

2. Applying scientific knowledge and understanding to address familiar and unfamiliar situations and to plan and carry out project work;

3. Interpreting and synthesizing scientific data and information and commenting on particular aspects of current research;

4. Critically evaluating information from a range of sources and making sound judgments taking account scientific theories and concepts and the social context;

5. Using conceptual models to understand, develop, and apply scientific principles; and

6. Acquiring skills required conduct standard laboratory procedures involved in synthetic and analytical work, in relation to both inorganic and organic systems.

General Competencies:

1. Applying knowledge and understanding to the solution of qualitative and quantitative problems;

2. Safe handling of chemical materials, taking into account their physical and chemical properties, including any specific hazards associated with their use;

3. Skillful monitoring, observation and measurement, of chemical properties, events or changes, and the systematic and reliable recording and documentation;

4. Skillfully using standard chemical instrumentation such as those used for structural investigations and separation;

5. Interpreting data derived from laboratory observations and measurements in terms of their significance and the theory underlying them;
6. Conducting risk assessments concerning the use of chemical substances and laboratory procedures;

7. Generalizing scientific findings to situations where evaluations have to be made on the basis of limited information;

8. Using up-to-date computerized technologies and other technologies whenever needed; and

9. Showing the ability of becoming independent life-long learners.

Qualities of Holders of Diploma in Chemistry:

In addition to their ability to continue their education toward the B.S. in Chemistry, the holders of the Diploma in Chemistry shall be able to function as start-up chemistry lab assistants, lab technicians, and teacher assistants, in a commercial or educational setting.

Program of Study

University Requirements (27 Credit hrs.)

- ARAB 101: Academic Writing in Arabic
- CMPS 100B: Introduction to Technical Computing for the Sciences
- ENGL 101: Basic Academic English I
- ENGL 102: Basic Academic English II
- ENGL 203: Advanced Academic English I
- ENGL 204: Advanced Academic English II
- MATH 199: Calculus I
- SOCS 100: World Civilizations I
- SOCS 102: Oman Society

College Requirements (3 Credit hrs.)

- One in any other majors (Highly Recommended CMPS 110) (3 Cr. hrs.)

Program Requirements (32 Credit hrs.)

- CHEM 130: Chemical Principles I
- CHEM 130L: Introductory Chemistry Laboratory
- CHEM 170: Chemical Principles II
- CHEM 210: Organic Chemistry I
- CHEM 250: Organic Chemistry II
- CHEM 255: Organic Chemistry Laboratory
- CHEM 260: Analytical Chemistry
- CHEM 265: Analytical Chemistry Laboratory
- MATH 200: Calculus II
- MATH 205: Calculus III
- PHYS 170: Fundamentals of Physics I
PHYS 170L: Introductory Physics Laboratory

Study Plan

<table>
<thead>
<tr>
<th>Year I</th>
<th>Semester 1 (Fall)</th>
<th>16 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>CHEM 130</td>
<td>Chemical Principles I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 130L</td>
<td>Introductory Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CMPS 100B</td>
<td>Introduction to Technical Computing for the Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English</td>
<td>3</td>
</tr>
<tr>
<td>MATH 199</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 100</td>
<td>World Civilizations I</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2 (Spring)</th>
<th>16 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
</tr>
<tr>
<td>CHEM 170</td>
<td>Chemical Principles II</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
</tr>
<tr>
<td>MATH 200</td>
<td>Calculus II</td>
</tr>
<tr>
<td>PHYS 170</td>
<td>Fundamentals of Physics I</td>
</tr>
<tr>
<td>PHYS 170L</td>
<td>Introductory Physics Laboratory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year II</th>
<th>Semester 3 (Fall)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>CHEM 210</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 205</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General Elective*</td>
<td>3</td>
</tr>
</tbody>
</table>

* A course in programming, Computer Science CMPS 110, is highly recommended for Chemistry major.

<table>
<thead>
<tr>
<th>Semester 4 (Spring)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>CHEM 250</td>
<td>Organic Chemistry II</td>
</tr>
<tr>
<td>CHEM 255</td>
<td>Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>CHEM 260</td>
<td>Analytical Chemistry</td>
</tr>
<tr>
<td>CHEM 265</td>
<td>Analytical Chemistry Laboratory</td>
</tr>
<tr>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
</tr>
</tbody>
</table>

Total Credits for the Diploma degree: 62 credit hrs.
Program of Study:

A. University Requirements (30 Credit hrs.)

Following are the BS general education requirements including the courses that may have been taken in the Diploma in Chemistry Program:

- ARAB 101: Academic Writing in Arabic
- CMPS 100B: Introduction to Technical Computing for the Sciences
- ENGL 101: Basic Academic English I
- ENGL 102: Basic Academic English II
- ENGL 203: Advanced Academic English I
- ENGL 204: Advanced Academic English II
- MATH 199: Calculus I
- SOCS 100: World Civilizations I
- SOCS 102: Oman Society
- SOCS 200: World Civilizations II

B. College Requirements (12-13 Credit hrs.)

- One course in physical/natural sciences electives (3-4 cr. hrs.)
- One course in humanities/social sciences electives (3 cr. hrs.)
- Two courses in any other majors (6 cr. hrs.)

C. Program Requirements (78 Credit hrs.)

Following are the courses required for the BS in Chemistry including the Diploma in Chemistry Courses:

Major Required Courses: The following 22 Courses (69 Credit hrs.)

- CHEM 130: Chemical Principles I
- CHEM 130L: Introductory Chemistry Laboratory
- CHEM 170: Chemical Principles II
- CHEM 210: Organic Chemistry I
- CHEM 250: Organic Chemistry II
- CHEM 255: Organic Chemistry Laboratory
- CHEM 260: Analytical Chemistry
- CHEM 265: Analytical Chemistry Laboratory
- CHEM 330: Chemical Dynamics and Thermodynamics
- CHEM 355: Quantum Chemistry
- CHEM 360: Inorganic Chemistry
- CHEM 410: Advanced Physical Chemistry Laboratory
- CHEM 420: Biochemistry
- CHEM 440: Research Project
- CHEM 455: Inorganic Chemistry Laboratory
- CHEM 480: Chemistry Seminar
- ENGL 360: Advanced Writing for Professional Fields
- MATH 200: Calculus II
• MATH 205: Calculus III
• MATH 210: Differential Equations
• PHYS 170: Fundamentals of Physics I
• PHYS 170L: Introductory Physics Laboratory
• PHYS 210: Fundamentals of Physics II
• PHYS 210L: Physics Laboratory II
• PHYS 275: Electronic Instrumentation
• PHYS 275L: Electronic Instrumentation Laboratory

Major Elective Courses: Three of the following Courses (9 Credit hrs.)

• CHEM 280: Environmental Chemistry
• CHEM 435: Advanced Inorganic Chemistry
• CHEM 460: Computational Chemistry
• CHEM 465: Electrochemistry
• CHEM 475: Special Topics

BS in Chemistry

Study Plan (BS in Chemistry):

<table>
<thead>
<tr>
<th>Year I</th>
<th>Semester 1 (Fall)</th>
<th>16 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>CHEM 130</td>
<td>Chemical Principles I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 130L</td>
<td>Introductory Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CMPS 100B</td>
<td>Introduction to Technical Computing for the Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 199</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 100</td>
<td>World Civilizations I</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2 (Spring)</th>
<th>16 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
</tr>
<tr>
<td>CHEM 170</td>
<td>Chemical Principles II</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
</tr>
<tr>
<td>MATH 200</td>
<td>Calculus II</td>
</tr>
<tr>
<td>PHYS 170</td>
<td>Fundamentals of Physics I</td>
</tr>
<tr>
<td>PHYS 170L</td>
<td>Introductory Physics Laboratory</td>
</tr>
</tbody>
</table>
Year II

Semester 3 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 210</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 205</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General Elective*</td>
<td>3</td>
</tr>
</tbody>
</table>

A course in programming, Computer Science CMPS 110, is highly recommended for Chemistry majors.

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 250</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 255</td>
<td>Organic Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 260</td>
<td>Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 265</td>
<td>Analytical Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits for the Diploma degree: 62 credit hrs.

Year III

Semester 5 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 330</td>
<td>Chemical Dynamics and Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 360</td>
<td>Advanced Writing for Professional Fields</td>
<td>3</td>
</tr>
<tr>
<td>MATH 210</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 210</td>
<td>Fundamentals of Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 210L</td>
<td>Physics Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>General Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 355</td>
<td>Quantum Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 360</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 275</td>
<td>Electronic Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 275L</td>
<td>Electronic Instrumentation Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilizations II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General Elective</td>
<td>3</td>
</tr>
</tbody>
</table>
Year IV

Semester 7 (Fall)
13 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 410</td>
<td>Advanced Physical Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 420</td>
<td>Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 440</td>
<td>Research Project</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 8 (Spring)
13 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 455</td>
<td>Inorganic Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 480</td>
<td>Chemistry Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Physical/ Natural Sciences Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits for the Bachelor degree: 120 credit hrs.

Chemistry

CHEM 100 Chemistry for the Arts (3 crs.)

A survey of chemistry including atomic structure, chemical bonding, acid-base equilibrium, and introductory thermodynamics and kinetics designed for non-science majors. This course emphasizes the significance of fundamental chemical principles and methodologies in real world problems. Students cannot receive credits for both CHEM 170 and CHEM 100. CHEM 100 cannot be taken for credit in lieu of CHEM 130, CHEM 130L or CHEM 170 when these courses are required for the major.

CHEM 130 Chemical Principles I (3 crs.)

An introduction to chemical principles covering atomic structure, quantum theory, chemical bonding, stoichiometry, thermodynamics, net ionic equations, aqueous reaction and gas laws with emphasis on examples and problems to illustrate the applications of chemistry to engineering disciplines.

CHEM 130L Introductory Chemistry Lab (1cr.) 0.3*

Weekly introductory lab sessions for Chemical Principles I which includes an introduction to chemical principles covering atomic structure, chemical bonding, stoichiometry, gas laws, chemical equilibrium including acid-base and solubility equilibrium, electrochemistry, introductory kinetics and thermodynamics. **Prerequisite or co-requisite: CHEM 130.**

CHEM 170 Chemical Principles II (3 crs.)

An introductory theoretical formulation of physical and analytical chemistry including the periodic table, properties of solutions, chemical equilibrium, acid-base equilibrium, electrochemistry, and an introduction to organic chemistry. **Prerequisites: CHEM 130.**
CHEM 210 Organic Chemistry I (3 crs.)
Introduction to organic chemistry functional groups, structures and reactions of alkanes, alkenes, alkynes, alkyl halides, and aromatic molecules; nomenclature of organic compounds; stereochemistry; reaction mechanisms and dynamics, and an introduction to biochemistry. *Prerequisite:* CHEM 170.

CHEM 250 Organic Chemistry II (3 crs.)
This course covers structures and reactions of alcohols, ethers, carboxylic acids, aldehydes, ketones, and amines. It also provides an introduction to chemistry of heterocycles, carbohydrates, amino acids, and synthesis and reaction techniques. Emphasis is on the classification of biochemical and petroleum products including synthetic polymers, lipids, detergents, and crude oil. *Prerequisite:* CHEM 210.

CHEM 250L Organic Chemistry Laboratory (1 cr)
Experimental organic chemistry focusing on the synthesis, separation, purification, and characterization of organic compounds. Characterization techniques include IR and UV visible absorbance, NMR, mass spectrometry, and chemical tests. Unknown compounds and mixtures of unknown compounds will be separated and identified by chemical and spectroscopic techniques. *Prerequisite:* CHEM 210.

CHEM 260 Analytical Chemistry (3 crs.)
The fundamentals and techniques of analytical chemistry including solution equilibria, titrations, spectroscopic fundamentals and techniques, electrochemical fundamentals and techniques, chromatography, and statistical analysis.

CHEM 280 Environmental Chemistry (3 crs.)
A survey of environmental problems, the chemistry of atmospheric processes. Stratospheric chemistry, the ozone layer, air pollution, the greenhouse effect, photochemical and chemical reactions, and properties of aerosols. Effect of pollutants on acid rain, global warming, water, soil, and health; and destruction of pollutants. Effect of energy production on the state of the environment including nuclear energy, fossil fuels, and hydrogen fuel. *Prerequisite:* CHEM 170 or CHEM 100. Can be taken by science and non-science majors.

CHEM 370 Physical Chemistry (3 crs)
Physics

PHYS 100 Physics for the Arts (3 crs.)
An introductory formulation of physical concepts. Covers mechanics, electricity and magnetism, light, atomic and nuclear physics for non-science majors. This course emphasizes the significance of fundamental physical principles and methodologies in real world problems. PHYS 100 cannot be taken for credits in lieu of PHYS 170, PHYS 170L or PHYS 210, PHYS 210L when these courses are required for the major.

PHYS 170 Fundamentals of Physics I (3 crs.)
Measurements, vectors, motion in one two and three dimensions, Newton’s laws, Particle dynamics, work and energy, circular motion and rotation, collisions, linear momentum and angular momentum, oscillations, Fluid statics and dynamics, wave motion and sound waves. Prerequisite or co-requisite: MATH 199 or MATH 103.

PHYS 170L Introductory Physics Lab (1 crs.)
Experiments related to the material taught in PHYS 170 (classical physics) with emphasis on error analysis and computer-assisted experimentation. Prerequisite or co-requisites: PHYS 170.

PHYS 210 Fundamentals of Physics II (3 crs.)
Electric field and potential, capacitance and dielectrics, current and resistance, DC circuits, magnetic fields, Faraday’s law, inductance, AC circuits, Maxwell’s equations. Lab experiments related to the material taught in PHYS 210 with emphasis error analysis and computer-assisted experimentation. Prerequisite: PHYS 170 or co-requisite: MATH 200.

PHYS 210L Physics Lab II (1 crs.)
Lab experiments related to the material taught in PHYS 210 with emphasis on error analysis and computer-assisted experimentation. Prerequisite or co-requisite: PHYS 210.
COLLEGE OF COMMERCE AND BUSINESS ADMINISTRATION (CCBA)
COLLEGE OF COMMERCE AND BUSINESS ADMINISTRATION

Officers
Dean Syed Ahsan Jamil
Secretary Aminah Hafidh Al Rawas

Organizational Structure
The College of Commerce and Business Administration is headed by a Dean overseeing three departments:

1. Department of Accounting and Finance,
2. Department of Management and Marketing and
3. Department of Management Information Systems

Vision
The College of Commerce and Business Administration (CCBA) at Dhofar University aspires to acquire a distinguished place among national, regional and international business educational institutions.

Mission
To provide high quality practical business education in an open learning environment, fostering research and community outreach and nurturing leaders who are capable of taking on leadership roles in society.

Objectives
The objectives of the programs at the College are:

• To provide students with up-to-date academic programs of high quality and relevance through excellent instruction, scholarly contribution, and service to students and other constituencies.
• To prepare students for a variety of managerial and professional careers in business through innovative programs that integrates theory with practical experience.
• To produce morally responsible individuals who are highly competent in their fields of specialization and well prepared to succeed in a global knowledge economy.
• To produce life-long self-learners committed to serve their society
Learning Outcomes of BA program

The bachelor degree programs aim to produce graduates who:
1. Have the knowledge and skills specifically in their area of specialization necessary to understand and succeed in business, government, and/or graduate school.
2. To create a global-oriented BA graduates who recognize the influence of globalization on country’s economy.
3. Are equipped to think creatively and critically and play leadership roles in society.
4. To nurture the research-oriented spirit among graduates so that they challenge the status quo situations to move to better ones.
5. To nurture the team work spirit among graduates.
6. To develop the interpersonal communication skills among graduates.
7. To enable graduates to professionally use the latest technologies that relate to their major in business.

Learning Outcomes of Diploma program

The diploma programs aim to produce graduates who:
1. Have the knowledge and skills specifically in their area of specialization necessary to understand and succeed in business, government, and/or graduate school.
2. Are equipped to think creatively and critically and play leadership roles in society.
3. To nurture the team work spirit among graduates.
4. To develop the interpersonal communication skills among graduates.
5. To enable graduates to professionally use the latest technologies that relate to their major in business.

Academic Programs

The College grants a Diploma in Business Administration, Bachelor of Arts in Business Administration and a Master of Arts in Management. Diploma and bachelor students may join for the morning or the evening program (but not both). The medium of instruction in all programs is English except the Masters of Art in Management program is in Arabic. (For a description of the Master of Arts in Management, please refer to the Graduate Studies section of this catalog.)
Diplomas

- Business Administration - Accounting
- Business Administration – Finance
- Business Administration - Insurance
- Business Administration – Management
- Business Administration – Marketing
- Business Administration - Management Information Systems

Bachelor Degrees (BA)

- Business Administration - Accounting
- Business Administration – Finance
- Business Administration - Insurance
- Business Administration - Management
- Business Administration - Marketing
- Business Administration - Management of Information Systems (MIS)

Admission Requirements

The College of Commerce and Business Administration admits students to the Diploma in Business Administration, the Bachelor of Arts degree in Business Administration, and the Master in Management. The criteria for admission to the first year are described in the first section of this catalogue.

Graduation Requirements

To receive a diploma in Business Administration, students must satisfactorily complete 60 credit hours (of which 21 credit hours are University requirements and 24 credit hours are College requirements and 15 credit hours are Major Compulsory Requirements) with a cumulative average of 65 percent.

To receive a Bachelor Degree in Business Administration, students must satisfactorily complete a total of 120 credit hours (including the 60 credits earned in the diploma) with a cumulative average of 65 percent, and a cumulative average of 70 percent in the courses of his/her major specialization area.
The following table summarizes the number of credits normally required for each Diploma and Bachelor granting program in the CCBA.

<table>
<thead>
<tr>
<th>Program</th>
<th>University Requirements</th>
<th>College Requirements</th>
<th>Major Compulsory Requirements</th>
<th>Electives Courses</th>
<th>Total Crs Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Social Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Skills of Life</td>
<td></td>
</tr>
<tr>
<td>Diploma</td>
<td>21</td>
<td>24</td>
<td>15</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td>Bachelor</td>
<td>27</td>
<td>51</td>
<td>30</td>
<td>6</td>
<td>120</td>
</tr>
</tbody>
</table>

Course Coding System

The following system of course numbering and prefixes is used:

- First year level courses start with 100, second year 200, third year 300, and fourth 400.
- Course Prefixes:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT</td>
<td>Accounting</td>
</tr>
<tr>
<td>BUSS</td>
<td>Business Administration</td>
</tr>
<tr>
<td>ECON</td>
<td>Economics</td>
</tr>
<tr>
<td>INSR</td>
<td>Insurance</td>
</tr>
<tr>
<td>FINA</td>
<td>Finance</td>
</tr>
<tr>
<td>MISS</td>
<td>Management Information Systems</td>
</tr>
<tr>
<td>MKTG</td>
<td>Marketing</td>
</tr>
<tr>
<td>MNGT</td>
<td>Management</td>
</tr>
</tbody>
</table>

University Requirements

The University requirements for all the Diploma programs consist of the following nine courses comprising 27 credit hours: (please refer to university requirement section of the catalogue)

1. ARAB 101: Academic Writing in Arabic
2. CMPS 100B: Introduction to Technical Computing for the Sciences
3. ENGL 101A: Basic Academic English I
4. ENGL 102: Basic Academic English II
5. ENGL 203: Advanced Academic English I
6. ENGL 204: Advanced Academic English II
7. MATH 103: Mathematics for Social Sciences I
8. SOCS 102: Oman Society
9. SOCS 200: World Civilizations II
College Requirements

The college requirements for all the diploma programs consist of the following seventeen courses comprising 51 credit hours and the student has to undergo summer internship which is a Zero credit Course:

1. BUSS 101: Principles of Management
2. BUSS 102: Principles of Financial Accounting
3. BUSS 103: Principles of Marketing
4. BUSS 104: Principles of Management Accounting
5. BUSS 105: Principles of Financial Management
6. BUSS 106: Business and Information Technology
7. BUSS 201: Principles of Microeconomics
8. BUSS 203: Principles of Macroeconomics
9. BUSS 302: Business Law
10. BUSS 303: Corporate Finance
11. BUSS 304: Quantitative Methods in Business
12. BUSS 306: Strategic Management
13. BUSS 307: Statistics for Business
14. BUSS 401: Research Methods
15. BUSS 402: Business Communications
16. BUSS 403: Business Environment
17. BUSS 404: Final Year Project
18. BUSS 405: Internship in Business

General Electives

Every student in the bachelor program only has to select a total of four courses or 12 credit hours from three clusters

CLUSTER ONE - Skill of Life Electives (SLE):

This set consists of one course comprising 3 credit hours. Skill of life electives include all courses taken in environmental studies, philosophy, psychology, and nutrition.

- ENVR 150: Introduction to Environmental Studies
- NUTR 150: Food and Nutrition
- PHIL 160: Critical and Creative Thinking
- PHIL 230: Principles of Professional Ethics
- PSYC 250: Personal Development
CLUSTER TWO - Social Science Electives (SSE):

This set consists of one course comprising 3 credit hours of social science electives. Social Science electives include all courses taken in psychology, sociology, and social work. (Please refer to Department of social science course description Section)

- PHIL 120: Introduction to Philosophy
- PSYC 150: Introduction to Psychology
- SOCS 110: History of Arabic and Islamic Civilization
- SOCS 150: Introduction to Sociology
- SOCS 210: Contemporary World Issues

CLUSTER THREE - Major General Electives (MGE):

This set consists of two courses comprising 6 credit hours. General Electives include all courses taken in the college and/or outside the college as given in the list of courses below. No other course can be taken apart from the one listed as major general elective. However the Dean of the college could substitute a course as per the rules. (Please Refer to Course description from respective departments)
<table>
<thead>
<tr>
<th>Clusters</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster One</td>
<td>PHIL 160</td>
<td>Critical and Creative Thinking</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHIL 230</td>
<td>Principles of Professional Ethics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENVR 150</td>
<td>Introduction to Environmental Studies</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSYC 250</td>
<td>Personal Development</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NUTR 150</td>
<td>Food and Nutrition</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cluster Two</td>
<td>PSYC 150</td>
<td>Introduction to Psychology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOCS 110</td>
<td>History of Arabic and Islamic Civilization</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOCS 150</td>
<td>Introduction to Sociology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOCS 210</td>
<td>Contemporary World Issues</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHIL 120</td>
<td>Introduction to Philosophy</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cluster Three</td>
<td>MISS 211</td>
<td>Introduction to Information Systems</td>
<td>3</td>
<td>BUSS 106</td>
</tr>
<tr>
<td></td>
<td>MISS 212</td>
<td>Systems Analysis and Design</td>
<td>3</td>
<td>BUSS 106</td>
</tr>
<tr>
<td></td>
<td>MISS 213</td>
<td>Business Programming</td>
<td>3</td>
<td>BUSS 106</td>
</tr>
<tr>
<td></td>
<td>ACCT 211</td>
<td>Intermediate Accounting I</td>
<td>3</td>
<td>BUSS 104</td>
</tr>
<tr>
<td></td>
<td>ACCT 212</td>
<td>Managerial Cost Accounting</td>
<td>3</td>
<td>BUSS 104</td>
</tr>
<tr>
<td></td>
<td>ACCT 213</td>
<td>Financial Statement Analysis</td>
<td>3</td>
<td>BUSS 104</td>
</tr>
<tr>
<td></td>
<td>MNGT 211</td>
<td>Human Resource Management</td>
<td>3</td>
<td>BUSS 101</td>
</tr>
<tr>
<td></td>
<td>MNGT 212</td>
<td>Organizational Behavior</td>
<td>3</td>
<td>BUSS 101</td>
</tr>
<tr>
<td></td>
<td>MNGT 213</td>
<td>Business Ethics</td>
<td>3</td>
<td>BUSS 101</td>
</tr>
<tr>
<td></td>
<td>FINA 211</td>
<td>Money and Capital Markets</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td></td>
<td>FINA 212</td>
<td>Commercial Bank Management</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td></td>
<td>FINA 213</td>
<td>Financial Services</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td></td>
<td>INSR 211</td>
<td>Principles of Insurance</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td></td>
<td>INSR 212</td>
<td>Principles of Risk</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td></td>
<td>INSR 213</td>
<td>Marketing of Insurance Products</td>
<td>3</td>
<td>BUSS 103</td>
</tr>
<tr>
<td></td>
<td>ECON 211</td>
<td>International Economics</td>
<td>3</td>
<td>BUSS 203</td>
</tr>
<tr>
<td></td>
<td>ECON 212</td>
<td>Economics of the Gulf Region</td>
<td>3</td>
<td>BUSS 203</td>
</tr>
<tr>
<td></td>
<td>ECON 213</td>
<td>Economic Development</td>
<td>3</td>
<td>BUSS 203</td>
</tr>
<tr>
<td></td>
<td>CMPS 205</td>
<td>Introduction to Multimedia Concepts</td>
<td>3</td>
<td>CMPS 100B</td>
</tr>
<tr>
<td></td>
<td>CMPS 210</td>
<td>Digital Image and Video Processing</td>
<td>3</td>
<td>CMPS 100B</td>
</tr>
<tr>
<td></td>
<td>ENGL 270</td>
<td>Situational English</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRDS 210</td>
<td>Typography I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRDS 220</td>
<td>Digital Media I</td>
<td>3</td>
<td>CMPS 100B</td>
</tr>
<tr>
<td></td>
<td>GRDS 232</td>
<td>Photography</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Course Description of College Requirements

BUSS 102 Principles of Financial Accounting (3 crs)
This course is the foundation course in accounting and aims to develop an understanding of the basic elements of financial accounting and the role of accounting in society. Topics covered include financial statements and fundamental accounting concepts; recording transactions, accounting cycle, accounting for cash and receivables.

BUSS 103 Principles of Marketing (3 crs)
This course introduces the field of marketing to students and how to make marketing decisions in business and non-profit organizations within the global context. The course devotes particular attention to analyzing consumer needs, segmenting markets, and developing product, promotion, pricing and distribution strategies. Relationships between consumers, business and governments are explored.

BUSS 104 Principles of Management Accounting (3 crs)
This is an introductory course to the discipline of Cost & Managerial Accounting. As College requirement, it is conceptually oriented. The course focuses on the role accounting as an information system can play inside an organization to help its various levels of management in performing their functions efficiently. It is designed to introduce that role to students with different specialization interests, not only those with interest in accounting. Generally, the course covers the basic cost concepts, analyses and methods of measurement, some of the tools available for the managerial accounting function, the types of information a cost and management accounting system can provide to help the manager. Prerequisite: BUSS 102

BUSS 105 Principles of Financial Management (3 crs)
The central focus of this course is on the role of financial management in maximizing the value of the firm. The course covers the basic building blocks of financial management, which will be needed in more advanced courses in finance. The core of this course is on the principles of modern corporate finance and financial management. It emphasizes important concepts and techniques needed for financial decision-making. Topics covered includes the goals of the firm, finance functions, agency problem, business ownership, ratio analysis of financial statement, financial environment of Oman including types of financial markets and types of financial instruments being used, the concept of time value of money, risk and return concept and calculations, and working capital management. Prerequisite: BUSS 102

BUSS 106 Business and Information Technology (3 crs)
This course aims at introducing the use of computer and computer systems to support business various needs. It can be considered as an extension of the "Introduction to computers and applications (CMPS100B)" course with a major difference in perspective. While CMPS100B introduces students to computers and their applications this course (BUSS 106) introduces students to the
business needs and how computers and their applications can be used to support solving those needs. It builds the clear role of information technology (IT) in general as an enabler element to the support businesses to realize their missions efficiently and effectively in an overall business environment increasingly characterized for its rigorous competition. Technically, it focuses on when and how to effectively use the various hardware and software applications to assist in conducting various business tasks that include creating documents, presentation files and spread sheets in addition to how correctly and effectively use the electronic mail system. Lab practices and assignments are essential teaching method of this course. Prerequisite: CMPS-100B

BUSS 201 Principles of Microeconomics (3 crs)
This course introduces the basic principles of microeconomics and their applications: supply and demand, operation of markets, consumer and enterprise behavior, competition and monopoly and income distribution. Prerequisite: BUSS 105

BUSS 203 Principles of Macroeconomics (3 crs)
This course introduces the basic principles of macroeconomics, stressing national income, unemployment, inflation, economic growth, business cycles, open economies and international trade. Prerequisite: BUSS 201

BUSS 302 Business Law (3 crs)
This course examines business legal issues such as legal concepts, philosophy and functions of court systems. It surveys contracts, legal forms of business and the regulation of businesses. Focuses on Omani law but also considers international and global legal perspectives. Prerequisite: BUSS 203

BUSS 303 Corporate Finance (3 crs)
The course reviews and reinforces the basic concepts covered in principles of financial management and completes on them. The primary objective of this course is to expand on that knowledge by introducing students to real world examples of how these concepts are used in day to day corporate strategic planning and decision making. Topics covered include capital budgeting techniques and analysis methods like NPV, IRR, Payback period, average return, cost benefit, cost of capital and leverages, sources and uses of funds, capital structure of the firm and dividend decisions. Prerequisite: BUSS 105

BUSS 304 Quantitative Methods in Business (3 crs)
This course is designed to prepare students for the mathematical and analytical applications required in subsequent business and economics courses. Its aim is to impart practical skills through theoretical lectures supported by practical problem solving approach. Topics include in this course are arithmetic and geometric series, polynomial and exponential functions, probability, business applications of derivative and integration, topics of descriptive statistics and their applications in business, Pre-requisite: MATH 103

BUSS 306 Strategic Management (3 crs)
This course applies the functional knowledge acquired in previous coursework to the analysis of strategic level business problems and decisions. The course includes the following topics: vision, missions and objectives, environmental analysis, formulating, implementing and assessing strategies and policies. It deals with both classical and contemporary issues of importance such as industry analysis, core competencies of organizations, top management teams and corporate governance, product/market scope decisions, and value chain analysis. The emphasis is on the application analytical tools and frameworks to understand complex strategy issues. The course stresses the integration of the various disciplines studied and the opportunity to develop managerial decision-making abilities. Contemporary developments in joint ventures, strategic alliances, cross-border mergers and acquisitions, and the management of the globally diversified organization will be addressed. Prerequisite: BUSS 302

BUSS 307 Statistics for Business (3 crs)
This course is designed to provide an understanding and working knowledge of statistical methods and concepts applied in business areas. The course aims to cover topics of statistical description and analysis appropriate for business students. The focus of the course is on the practical use of data in business decision making. Thus it will use a problem solving approach that focuses on interpretation of statistical information while developing understanding of underlying theory. The topics include are descriptive techniques-graphical and tabular, measures of descriptive statistics, measures of dispersion, introduction of probability, random variable and its expected value, probability distributions-binomial, exponential, and normal, estimation and introduction of hypotheses testing, simple regression and correlation. Use of MS Excel and SPSS will be used. Pre-requisite: BUSS 304

BUSS 401 Research Methods (3 crs)
The goal of statistics is to improve quality of business decisions making through organized information, analysis and interpretation of data. This course builds on the concepts studied in BUSS 302. It puts emphases on application of various statistical techniques in support of decision making process in various functional areas of business. Topics covered in this course are t-distribution, confidence interval, hypotheses testing, analysis of variance, simple and multiple regression analysis. Non parametric tests with emphasis on goodness of fit using Chi-square test. The emphasis will be on application of these concepts with extensive use of MS Excel and SPSS. Prerequisite: BUSS 307

BUSS 402 Business Communications (3 crs)
The course aims to maximize student practice and production in communication for an academic or professional environment. It is intended to promote the acquisition of new skills and language relevant to oral communication in a variety of practical settings and, in particular, to improve student confidence in planning and delivering oral presentations in English. Also, it provides the basic knowledge of English report writing for business. Prerequisite: ENGL 204
BUSS 403 Business Environment (3 crs)
Business Environment is a course that is firmly based upon current business practice and organization. While being broad and flexible it is relevant, thus providing commercial students with a strong foundation for courses of further specialization such as Economics, Accounting, Finance and Marketing. The Business Environment is a cornerstone undergraduate course delivering a comprehensive introduction to major topics, theories and issues relevant to the elements of the 21st century business environment. Business Environment will encourage students to acquire the basic analytical tools necessary to engage in analyses of business problems and decisions. Prerequisite: BUSS 302 and BUSS 306

BUSS 404 Final Year Project (3 crs)
Every student has to choose a relevant business situation/problem and using the knowledge gained on how to tackle the problem come out with a viable solution. The entire project has to be completed under the supervision of a faculty mentor and the students have to defend the report submitted in front of a jury. Prerequisite: BUSS 401

BUSS 405 Internship in Business
All third year business students are required to fulfill a summer (July and August) internship period of eight weeks of specialized work on an individual basis, consisting of training and practice in actual service in a technical, business, or governmental establishment under both faculty supervision by a mentor and corporate guidance by a preceptor who will acquaint students with the world of work and help them acquire the core values and basic skills necessary for an understanding of the business world. Internees will be assigned tasks and responsibilities commensurate with their skills and qualifications. This program is offered on a pass/fail basis only.

The main objective of the training is to let students experience work prior to their employment by external bodies and to acquaint the students formally to a real life work place environment. This will help to explore the relationship between the knowledge & skills acquired with those in the working situations to make them more useful to the market demand. This also enhances strong industrial links between the students and the industrial sector.

GENERAL ELECTIVE

CLUSTER 1: SKILLS FOR LIFE ELECTIVES: Course Description

PHIL 160 Critical and Creative Thinking (3 crs)
This course explores the field of critical thinking from a historical perspective, explaining how various philosophical schools define and deal with the concepts of critical thinking, problem solving, logical reasoning, creative thinking, logical and textual analyses, fallacies and certainty in knowledge. Students will develop understanding of the critical and creative thinking processes. They will be guided to think more clearly, insightfully and effectively, enhancing their own natural tendencies for critical and creative thinking.
PHIL 230 Principles of Professional ethics (3 crs)
Deals with the meaning and authenticity of ethical life and raises issues related to working in a professional environment such as: what does it mean to be a professional? What moral qualities should professionals have? What are the rights and responsibilities of professionals? Can one’s personal morality conflict with one’s professional moral commitments? How to balance one’s professional responsibilities with the interests of the clients and the community? What is corporate responsibility? What are the limits of privacy and confidentiality? What are the ethical implications of plagiarism, cheating, deception, dishonesty and infringement of copyrights? These discussions will be set within an ethical theoretical framework, which will provide students with an ethical perspective necessary for making them better decision-making professionals.

ENVR 150 Introduction to Environmental Studies (3 crs)
This course attempts to provide an overview of environmental science: the interactions between humans and the environment, with an emphasis on the natural science elements of environmental issues. More specifically, this course is an introduction to the various ways that humans depend on the earth’s natural resources, and how human activities directly and indirectly affect the earth and its human and non-human inhabitants. In addition, the course will explore how policy, individual behavior, and technology can prevent, control, and reverse environmental harm.

PSYC 250 Personal development (3 crs)
This course aims at introducing students to the world of work, potential career paths and planning. The primary goal of this course is to enable students to acquire the knowledge and skills for employment and think entrepreneurially. The course also enables the student to know oneself in terms of personality type and vocational aptitudes that are considered useful in making occupational decisions. Various hands-on activities are offered both inside and outside the classroom to give students a taste of the world of work in the 21st century. Professionals are invited in class to introduce students to various career opportunities available after graduation.

NUTR 150 Food and Nutrition (3 crs)
Food and Nutrition is a course which focuses on helping students understand the significance of eating appropriate foods, principles of nutrition, and the importance of carbohydrates, fats, proteins, vitamins and minerals in the diet. This course provides students with the opportunity to analyze diet according to nutritional needs and also to develop skills in the selection, storage, and preparation of food.
DEPARTMENT OF ACCOUNTING AND FINANCE

Personnel

Chairperson Muawya Ahmed Hussein
Associate Professor Syed Ahsan Jamil
Assistant Professors Mawih Kareem Shaker Al Ani, Ahmaruddin Mohammed, Badreldin Salim Faroug, Mohammed Imran Khan, , Shariq Mohammed, Zaroug Osman Mohammed Bilal
Lecturers Gopal Sinha, Shireen Rosario
Secretary Aminah Hafidh Al Rawas

Department Vision:
To have leadership position in the region in accounting and finance education, research, and outreach to the society and the profession in the sultanate of Oman

Department Mission
To provide the students with accounting and finance knowledge, analytical and thinking skills, and encourage the scientific research in an open learning environment to serve the community

Programs Offered
The department offers the following programs in specific majors:

Diploma Program
- Diploma in Business Administration - Accounting
- Diploma in Business Administration - Insurance
- Diploma in Business Administration – Finance

Bachelors Program
- Bachelor of Arts in Business Administration - Accounting
- Bachelor of Arts in Business Administration - Insurance
- Bachelor of Arts in Business Administration - Finance
Accounting Major

Degrees Offered

- Diploma in Business Administration - Accounting
- Bachelor of Arts in Business Administration - Accounting

Aims of the Accounting program:

Upon completion of a Bachelor’s degree in Accounting, graduates will be able to:

1. Develop skills for lifelong learning in accounting and economics.
2. Demonstrate competencies in the development, measurement, analysis, validation and communication of financial and other information.
3. Develop oral and written communication skills.
4. Identify a problem and the information needed to develop alternative solutions, evaluate alternative solution in the framework of critical thinking.
5. Recognize role of ethics in both the profession and the business world.
6. Understand the global business environmental and accounting issues.
7. Understand and use technology.
8. Implement the activities with teamwork.
9. Find placement in local, regional, and national Certified Public Accounting firms; industry firms; and not-for-profit and government entities

University requirements

The University requirements for all the programs consist of the following nine courses comprising 27 credit hours:

1. ARAB 101: Academic Writing in Arabic
2. CMPS 100B: Introduction to Technical Computing for the Sciences
3. ENGL 101A: Basic Academic English I
4. ENGL 102: Basic Academic English II
5. ENGL 203: Advanced Academic English I
6. ENGL 204: Advanced Academic English II
7. MATH 103: Mathematics for Social Sciences I
8. SOCS 102: Oman Society
9. SOCS 200: World Civilizations II
College requirements

The college requirements for all the programs consist of the following seventeen courses comprising 51 credit hours:
1. BUSS 101: Principles of Management
2. BUSS 102: Principles of Financial Accounting
3. BUSS 103: Principles of Marketing
4. BUSS 104: Principles of Management Accounting
5. BUSS 105: Principles of Financial Management
6. BUSS 106: Business and Information Technology
7. BUSS 201: Principles of Microeconomics
8. BUSS 203: Principles of Macroeconomics
9. BUSS 302: Business Law
10. BUSS 303: Corporate Finance
11. BUSS 304: Quantitative Methods in Business
12. BUSS 306: Strategic Management
13. BUSS 307: Statistics for Business
14. BUSS 401: Research Methods
15. BUSS 402: Business Communications
16. BUSS 403: Business Environment
17. BUSS 404: Final Year Project
18. BUSS 405: Internship in Business

Major Compulsory Requirements

The courses required for Accounting major are as follows:
1. ACCT 211: Intermediate Accounting I
2. ACCT 212: Managerial Cost Accounting
3. ACCT 213: Financial Statement Analysis
4. ACCT 214: Internal Auditing
5. ACCT 215: Intermediate Accounting II
6. ACCT 401: Advanced Auditing
7. ACCT 402: Advanced Accounting
8. ACCT 403: Government and Fund Accounting
9. ACCT 404: International Accounting
10. ACCT 405: Accounting Information Systems

Major General Electives:

This set consists of two courses comprising 6 credit hours. General Electives include all courses taken in the college and/or outside the college.

Social Science Electives:

This set consists of one course comprising 3 credit hours of social science electives. Social Science electives include all courses taken in psychology, sociology, and social work.
• PHIL 120: Introduction to Philosophy
• PSYC 150: Introduction to Psychology
• SOCS 110: History of Arabic and Islamic Civilization
• SOCS 150: Introduction to Sociology
• SOCS 210: Contemporary World Issues

Skill of Life Electives:

This set consists of one course comprising 3 credit hours. Skill of life electives include all courses taken in environmental studies, philosophy, psychology, and nutrition.

• ENVR 150: Introduction to Environmental Studies
• NUTR 150: Food and Nutrition
• PHIL 160: Critical and Creative Thinking
• PHIL 230: Principles of Professional Ethics
• PSYC 250: Personal Development

Plans Of Study (Pos) Accounting Major

<table>
<thead>
<tr>
<th>Year I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1 (Fall)</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Tile</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>BUSS 101</td>
<td>Principles of Management</td>
</tr>
<tr>
<td>BUSS 102</td>
<td>Principles of Financial Accounting</td>
</tr>
<tr>
<td>CMPS 100B</td>
<td>Introduction to Technical Computing for Science</td>
</tr>
<tr>
<td>ENGL 101A</td>
<td>Basic Academic English I</td>
</tr>
<tr>
<td>MATH 103</td>
<td>Mathematics for Social Sciences I</td>
</tr>
<tr>
<td>Total Credits</td>
<td>15</td>
</tr>
<tr>
<td>Semester 2 (Spring)</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Tile</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>BUSS 103</td>
<td>Principles of Marketing</td>
</tr>
<tr>
<td>BUSS 104</td>
<td>Principles of Management Accounting</td>
</tr>
<tr>
<td>BUSS 105</td>
<td>Principles of Financial Management</td>
</tr>
<tr>
<td>BUSS 106</td>
<td>Business and Information Technology</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
</tr>
<tr>
<td>Total Credits</td>
<td>15</td>
</tr>
<tr>
<td>Year II</td>
<td></td>
</tr>
<tr>
<td>Semester 3 (Fall)</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Tile</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>ACCT 211</td>
<td>Intermediate Accounting I</td>
</tr>
<tr>
<td>ACCT 212</td>
<td>Managerial Cost Accounting</td>
</tr>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
</tr>
<tr>
<td>BUSS 201</td>
<td>Principles of Microeconomics</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
</tr>
<tr>
<td>Total Credits</td>
<td>15</td>
</tr>
</tbody>
</table>
Semester 4 (Spring)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 213</td>
<td>Financial Statement Analysis</td>
<td>3</td>
<td>BUSS 104</td>
</tr>
<tr>
<td>ACCT 214</td>
<td>Internal Auditing</td>
<td>3</td>
<td>ACCT 211</td>
</tr>
<tr>
<td>ACCT 215</td>
<td>Intermediate Accounting II</td>
<td>3</td>
<td>ACCT 211</td>
</tr>
<tr>
<td>BUSS 203</td>
<td>Principles of Macroeconomics</td>
<td>3</td>
<td>BUSS 201</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
<td>3</td>
<td>FPE 103C</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

DIPLOMA IN ACCOUNTING (60 CREDITS)

Year III

Semester 5 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 302</td>
<td>Business Law</td>
<td>3</td>
<td>BUSS 203</td>
</tr>
<tr>
<td>BUSS 303</td>
<td>Corporate Finance</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td>BUSS 304</td>
<td>Quantitative Methods in Business</td>
<td>3</td>
<td>MATH 103</td>
</tr>
<tr>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
<td>3</td>
<td>ENGL 203</td>
</tr>
<tr>
<td></td>
<td>Skills of Life Elective (Cluster 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Semester 6 (Spring)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 401</td>
<td>Advanced Auditing</td>
<td>3</td>
<td>ACCT 214</td>
</tr>
<tr>
<td>BUSS 306</td>
<td>Strategic Management</td>
<td>3</td>
<td>BUSS 203 & BUSS 302</td>
</tr>
<tr>
<td>BUSS 307</td>
<td>Statistics for Business</td>
<td>3</td>
<td>BUSS 304</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilization</td>
<td>3</td>
<td>ENGL 203</td>
</tr>
<tr>
<td></td>
<td>Social Science Elective (Cluster 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Summer

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 405</td>
<td>Internship in Business (Two Months)</td>
<td>0</td>
<td>8 weeks</td>
</tr>
</tbody>
</table>

Year IV

Semester 7 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 402</td>
<td>Advanced Accounting</td>
<td>3</td>
<td>ACCT 215</td>
</tr>
<tr>
<td>ACCT 403</td>
<td>Government and Fund Accounting</td>
<td>3</td>
<td>ACCT 215</td>
</tr>
<tr>
<td>BUSS 401</td>
<td>Research Methods</td>
<td>3</td>
<td>BUSS 307</td>
</tr>
<tr>
<td>BUSS 402</td>
<td>Business Communications</td>
<td>3</td>
<td>ENGL 204</td>
</tr>
<tr>
<td></td>
<td>Major General Elective I (Cluster 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Semester 8 (Spring)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 404</td>
<td>International Accounting</td>
<td>3</td>
<td>4th year standing</td>
</tr>
<tr>
<td>ACCT 405</td>
<td>Accounting Information Systems</td>
<td>3</td>
<td>4th year standing</td>
</tr>
<tr>
<td>BUSS 403</td>
<td>Business Environment</td>
<td>3</td>
<td>BUSS 302 & BUSS 306</td>
</tr>
<tr>
<td>BUSS 404</td>
<td>Final year Project</td>
<td>3</td>
<td>BUSS 401</td>
</tr>
<tr>
<td></td>
<td>Major General Elective II (Cluster 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

BACHELOR IN ACCOUNTING (120 CREDITS)
Finance Major

Degrees Offered

- Diploma in Business Administration – Finance
- Bachelor of Arts in Business Administration - Finance

Aims of the Finance program:

Upon completion of a Bachelor’s degree in Finance, graduates will be able to:
1. Develop skills for lifelong learning in Finance and economics.
2. Demonstrate competencies in the development, measurement, analysis, validation and communication of financial and other information.
3. Develop oral and written communication skills.
4. Identify a problem and the information needed to develop alternative solutions, evaluate alternative solution in the framework of critical thinking.
5. Recognize role of ethics in both the profession and the business world.
6. Understand the global business environmental and financial system.
7. Understand and use technology in all financial applications.
8. Implement the activities with teamwork.
9. Find placement in local, regional, and national finance companies; banks and insurance sector

University requirements

The University requirements for all the programs consist of the following nine courses comprising 27 credit hours:
1. ARAB 101: Academic Writing in Arabic
2. CMPS 100B: Introduction to Technical Computing for the Sciences
3. ENGL 101A: Basic Academic English I
4. ENGL 102: Basic Academic English II
5. ENGL 203: Advanced Academic English I
6. ENGL 204: Advanced Academic English II
7. MATH 103: Mathematics for Social Sciences I
8. SOCS 102: Oman Society
9. SOCS 200: World Civilizations II

College requirements

The college requirements for all the programs consist of the following seventeen courses comprising 51 credit hours:
1. BUSS 101: Principles of Management
2. BUSS 102: Principles of Financial Accounting
3. BUSS 103: Principles of Marketing
4. BUSS 104: Principles of Management Accounting
5. BUSS 105: Principles of Financial Management
6. BUSS 106: Business and Information Technology
7. BUSS 201: Principles of Microeconomics
8. BUSS 203: Principles of Macroeconomics
9. BUSS 302: Business Law
10. BUSS 303: Corporate Finance
11. BUSS 304: Quantitative Methods in Business
12. BUSS 306: Strategic Management
13. BUSS 307: Statistics for Business
14. BUSS 401: Research Methods
15. BUSS 402: Business Communications
16. BUSS 403: Business Environment
17. BUSS 404: Final Year Project
18. BUSS 405: Internship in Business

Major Compulsory Requirements

The courses required for Finance major are as follows:

1. FINA 211: Money and Capital Markets
2. FINA 212: Commercial Bank Management
3. FINA 213: Financial Services
4. FINA 214: Islamic Finance
5. FINA 215: Risk Management
6. FINA 401: Insurance
7. FINA 402: Investment Management
8. FINA 403: Behavioral Finance
9. FINA 404: Personal Financial Planning
10. FINA 405: International Financial Management

Major General Electives:

This set consists of two courses comprising 6 credit hours. General Electives include all courses taken in the college and/or outside the college.

Social Science Electives:

This set consists of one course comprising 3 credit hours of social science electives. Social Science electives include all courses taken in psychology, sociology, and social work.

- PHIL 120: Introduction to Philosophy
- PSYC 150: Introduction to Psychology
- SOCS 110: History of Arabic and Islamic Civilization
- SOCS 150: Introduction to Sociology
- SOCS 210: Contemporary World Issues

187
Skill of Life Electives:

This set consists of one course comprising 3 credit hours. Skill of life electives include all courses taken in environmental studies, philosophy, psychology, and nutrition.

- ENVR 150: Introduction to Environmental Studies
- NUTR 150: Food and Nutrition
- PHIL 160: Critical and Creative Thinking
- PHIL 230: Principles of Professional Ethics
- PSYC 250: Personal Development

Plans of Study (POS) FINANCE

<table>
<thead>
<tr>
<th>Year I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1 (Fall)</td>
</tr>
<tr>
<td>Code</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>BUSS 101</td>
</tr>
<tr>
<td>BUSS 102</td>
</tr>
<tr>
<td>CMPS 100B</td>
</tr>
<tr>
<td>ENGL 101A</td>
</tr>
<tr>
<td>MATH 103</td>
</tr>
<tr>
<td>Total Credits</td>
</tr>
</tbody>
</table>

<p>| Semester 2 (Spring) |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 103</td>
<td>Principles of Marketing</td>
<td>3</td>
<td>FPE 103C</td>
</tr>
<tr>
<td>BUSS 104</td>
<td>Principles of Management Accounting</td>
<td>3</td>
<td>BUSS 102</td>
</tr>
<tr>
<td>BUSS 105</td>
<td>Principles of Financial Management</td>
<td>3</td>
<td>BUSS 102</td>
</tr>
<tr>
<td>BUSS 106</td>
<td>Business and Information Technology</td>
<td>3</td>
<td>CMPS 100B</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
<td>3</td>
<td>ENGL 101A</td>
</tr>
<tr>
<td>Total Credits</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| Year II |
| Semester 3 (Fall) |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
<td>FPE 103C</td>
</tr>
<tr>
<td>BUSS 201</td>
<td>Principles of Microeconomics</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
<td>ENGL 102</td>
</tr>
<tr>
<td>FINA 211</td>
<td>Money and Capital Markets</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td>FINA 212</td>
<td>Commercial Bank Management</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td>Total Credits</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| Semester 4 (Spring) |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 203</td>
<td>Principles of Macroeconomics</td>
<td>3</td>
<td>BUSS 201</td>
</tr>
<tr>
<td>FINA 213</td>
<td>Financial Services</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td>FINA 214</td>
<td>Islamic Finance</td>
<td>3</td>
<td>FINA 211</td>
</tr>
<tr>
<td>FINA 215</td>
<td>Risk Management</td>
<td>3</td>
<td>FINA 211</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
<td>3</td>
<td>FPE 103C</td>
</tr>
<tr>
<td>Total Credits</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DIPLOMA IN FINANCE (60 CREDITS)
Year III

Semester 5 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 302</td>
<td>Business Law</td>
<td>3</td>
<td>BUSS 203</td>
</tr>
<tr>
<td>BUSS 303</td>
<td>Corporate Finance</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td>BUSS 304</td>
<td>Quantitative Methods in Business</td>
<td>3</td>
<td>MATH 103</td>
</tr>
<tr>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
<td>3</td>
<td>ENGL 203</td>
</tr>
<tr>
<td></td>
<td>Skills of Life Elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 15

Semester 6 (Spring)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 306</td>
<td>Strategic Management</td>
<td>3</td>
<td>BUSS 302</td>
</tr>
<tr>
<td>BUSS 307</td>
<td>Statistics for Business</td>
<td>3</td>
<td>BUSS 304</td>
</tr>
<tr>
<td>FINA 401</td>
<td>Insurance</td>
<td>3</td>
<td>FINA 211</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilization</td>
<td>3</td>
<td>ENGL 203</td>
</tr>
<tr>
<td></td>
<td>Social Science Elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 15

Summer

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BUSS 405</td>
<td>Internship in Business (Two Months)</td>
<td>0</td>
</tr>
</tbody>
</table>

Year IV

Semester 7 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 401</td>
<td>Research Methods</td>
<td>3</td>
<td>BUSS 307</td>
</tr>
<tr>
<td>BUSS 402</td>
<td>Business Communications</td>
<td>3</td>
<td>ENGL 204</td>
</tr>
<tr>
<td>FINA 402</td>
<td>Investment Management</td>
<td>3</td>
<td>FINA 215 & BUSS 307</td>
</tr>
<tr>
<td>FINA 403</td>
<td>Behavioral Finance</td>
<td>3</td>
<td>FINA 215</td>
</tr>
<tr>
<td></td>
<td>Major General Elective I</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 15

Semester 8 (Spring)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 403</td>
<td>Business Environment</td>
<td>3</td>
<td>BUSS 302 & BUSS 306</td>
</tr>
<tr>
<td>BUSS 404</td>
<td>Final year Project</td>
<td>3</td>
<td>BUSS 401</td>
</tr>
<tr>
<td>FINA 404</td>
<td>Personal Financial Planning</td>
<td>3</td>
<td>4th year standing</td>
</tr>
<tr>
<td>FINA 405</td>
<td>International Financial Management</td>
<td>3</td>
<td>4th year standing</td>
</tr>
<tr>
<td></td>
<td>Major General Elective II</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 15

BACHELOR IN FINANCE (120 CREDITS)
Insurance Major

Degrees Offered

- Diploma in Business Administration - Insurance
- Bachelor of Arts in Business Administration - Insurance

University requirements

The University requirements for the programs consist of the following nine courses comprising 27 credit hours:
1. ARAB 101: Academic Writing in Arabic
2. CMPS 100B: Introduction to Technical Computing for the Sciences
3. ENGL 101A: Basic Academic English I
4. ENGL 102: Basic Academic English II
5. ENGL 203: Advanced Academic English I
6. ENGL 204: Advanced Academic English II
7. MATH 103: Mathematics for Social Sciences I
8. SOCS 102: Oman Society
9. SOCS 200: World Civilizations II

College requirements

The college requirements for all the programs consist of the following seventeen courses comprising 51 credit hours:
1. BUSS 101: Principles of Management
2. BUSS 102: Principles of Financial Accounting
3. BUSS 103: Principles of Marketing
4. BUSS 104: Principles of Management Accounting
5. BUSS 105: Principles of Financial Management
6. BUSS 106: Business and Information Technology
7. BUSS 201: Principles of Microeconomics
8. BUSS 203: Principles of Macroeconomics
9. BUSS 302: Business Law
10. BUSS 303: Corporate Finance
11. BUSS 304: Quantitative Methods in Business
12. BUSS 306: Strategic Management
13. BUSS 307: Statistics for Business
14. BUSS 401: Research Methods
15. BUSS 402: Business Communications
16. BUSS 403: Business Environment
17. BUSS 404: Final Year project
- BUSS 405: Internship in Business

Major Compulsory Requirements

The courses required for Insurance major are as follows:
1. INSR 211: Principles of Insurance
2. INSR 212: Legal Aspects of Insurance
3. INSR 213: Marketing of Insurance Products
4. INSR 214: Personal and Health Insurance
5. INSR 215: Insurance Practice and Policies in Oman
6. INSR 401: Fundamentals of Actuarial Sciences
7. INSR 402: Risk Analysis and Underwriting
8. INSR 403: Life Insurance
9. INSR 404: Property and Liability Insurance
10. INSR 405: Islamic Insurance

Major General Electives:

This set consists of two courses comprising 6 credit hours. General Electives include all courses taken in the college and/or outside the college.

Social Science Electives:

This set consists of one course comprising 3 credit hours of social science electives. Social Science electives include all courses taken in psychology, sociology, and social work.

- PHIL 120: Introduction to Philosophy
- PSYC 150: Introduction to Psychology
- SOCS 110: History of Arabic and Islamic Civilization
- SOCS 150: Introduction to Sociology
- SOCS 210: Contemporary World Issues

Skill of Life Electives:

This set consists of one course comprising 3 credit hours. Skill of life electives include all courses taken in environmental studies, philosophy, psychology, and nutrition.

- ENVR 150: Introduction to Environmental Studies
- NUTR 150: Food and Nutrition
- PHIL 160: Critical and Creative Thinking
- PHIL 230: Principles of Professional Ethics
- PSYC 250: Personal Development
Plans of Study (POS) INSURANCE

Year I

Semester 1 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 101</td>
<td>Principles of Management</td>
<td>3</td>
<td>FPE 103C</td>
</tr>
<tr>
<td>BUSS 102</td>
<td>Principles of Financial Accounting</td>
<td>3</td>
<td>FPE 103C</td>
</tr>
<tr>
<td>CMPS 100B</td>
<td>Introduction to Technical Computing for Science</td>
<td>3</td>
<td>FPT 102B</td>
</tr>
<tr>
<td>ENGL 101A</td>
<td>Basic Academic English I</td>
<td>3</td>
<td>FPE 103C</td>
</tr>
<tr>
<td>MATH 103</td>
<td>Mathematics for Social Sciences I</td>
<td>3</td>
<td>FPM 102B</td>
</tr>
</tbody>
</table>

Total Credits: 15

Semester 2 (Spring)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 103</td>
<td>Principles of Marketing</td>
<td>3</td>
<td>FPE 103C</td>
</tr>
<tr>
<td>BUSS 104</td>
<td>Principles of Management Accounting</td>
<td>3</td>
<td>BUSS 102</td>
</tr>
<tr>
<td>BUSS 105</td>
<td>Principles of Financial Management</td>
<td>3</td>
<td>BUSS 102</td>
</tr>
<tr>
<td>BUSS 106</td>
<td>Business and Information Technology</td>
<td>3</td>
<td>CMPS 100B</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
<td>3</td>
<td>ENGL 101A</td>
</tr>
</tbody>
</table>

Total Credits: 15

Year II

Semester 3 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
<td>FPE 103C</td>
</tr>
<tr>
<td>BUSS 201</td>
<td>Principles of Microeconomics</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
<td>ENGL 102</td>
</tr>
<tr>
<td>INSR 211</td>
<td>Principles of Insurance</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td>INSR 212</td>
<td>Legal Aspects of Insurance</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
</tbody>
</table>

Total Credits: 15

Semester 4 (Spring)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 203</td>
<td>Principles of Macroeconomics</td>
<td>3</td>
<td>BUSS 201</td>
</tr>
<tr>
<td>INSR 213</td>
<td>Marketing of Insurance Products</td>
<td>3</td>
<td>BUSS 103</td>
</tr>
<tr>
<td>INSR 214</td>
<td>Personal and Health Insurance</td>
<td>3</td>
<td>INSR 211</td>
</tr>
<tr>
<td>INSR 215</td>
<td>Insurance Practice and Policies in Oman</td>
<td>3</td>
<td>INSR 211</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
<td>3</td>
<td>FPE 103C</td>
</tr>
</tbody>
</table>

Total Credits: 15

Year III

Semester 5 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 302</td>
<td>Business Law</td>
<td>3</td>
<td>BUSS 203</td>
</tr>
<tr>
<td>BUSS 303</td>
<td>Corporate Finance</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td>BUSS 304</td>
<td>Quantitative Methods in Business</td>
<td>3</td>
<td>MATH 103</td>
</tr>
<tr>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
<td>3</td>
<td>ENGL 203</td>
</tr>
<tr>
<td></td>
<td>Skills of Life Elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 15

Semester 6 (Spring)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
</table>

DIPLOMA IN INSURANCE (60 CREDITS)
Course Descriptions

Major: Accounting (All courses for 3 Credit hours)

ACCT 211 Intermediate Accounting I (3 crs)
This course deals with the Underlying concepts of asset valuation and revenue recognition, Reporting of current and long-term assets, including cash and receivables, inventories, plant assets and depreciation, natural resources, intangibles and investments. Underlying concepts of liability recognition and reporting of current liabilities and contingencies. **Prerequisite: BUSS 104**

ACCT 212 Managerial Cost Accounting (3 crs)
This course covers the Fundamental concepts of management and cost accounting such as cost-volume-profit analysis, budgeting and variance analysis, relevant costs for decision-making, and job order and process cost systems. It also covers emerging topics such as Activity-Based Costing (ABC) and JIT systems. **Prerequisite: BUSS 104**
ACCT 213 Financial statement analysis (3 crs)
Financial Statement Analysis course provides a broad framework for using financial statement analysis to evaluate a firm’s business operations and to predict its future condition. It is designed to achieve two main objectives. The first is to appreciate and understand the connections between firms’ operation strategies and their financial statements. This understanding then serves as the basis for the second objective, which is to develop a critical, user’s perspective to analyze and interpret financial statements to gain further insights into firms’ performance. To achieve these objectives, important tools and skills are taught throughout the course with cases based on actual companies’ financial statements. Main topics include, but are not limited to, ratio and profitability analysis, analysis of the statement of cash flows, pro forma forecasting, (credit and governance) risk analysis and earnings quality analysis.
Prerequisite: BUSS 104

ACCT 214 Internal Auditing (3 crs)
This course examines the role of the audit profession in society and the need for, and nature of, auditing in the public and private sectors. It aims to provide students with a conceptual and ethical framework within which to evaluate existing systems, and address practical problems. An essential part of the performance of an audit is the exercise of technical and ethical judgment. The development of judgment emerges from participation and experience for which this course is not a substitute. However, students should expect to be able to apply the material learned to problems they may encounter when they enter professional practice, including the formation of the auditor’s opinion and writing the audit report.
Prerequisite: ACCT 211

ACCT 215 Intermediate Accounting II (3 crs)
The course covers Underlying concepts of long-term liability recognition and valuation, including bonds, long-term debt, leases, deferred taxes, and pensions and Concepts of shareholder’s equity, including earnings per share, accounting changes, error corrections and the Statement of Cash Flows.
Prerequisite: ACCT 211

ACCT 401 Advance Auditing (3 crs)
This course aims at preparing students to make decisions that an auditor often makes when he conducts the audit. It includes auditing problems such as Audit Risk, Materiality & Analytical Review. The course also includes Contemporary Trends in the following topical area: statistical sampling in Auditing & the impact of Computer on Auditing. It utilizes auditing software package.
Prerequisite: ACCT 214

ACCT 402 Advanced Accounting (3 crs)
The course covers specialized accounting topics in business combinations, consolidated financial statements, foreign currency transactions, translation of foreign financial statements, partnership ownership changes and liquidations, and bankruptcy.
Prerequisite: ACCT 215

ACCT 403 Government and Fund Accounting (3 crs)
This course introduces the theory and concepts underlying accounting, control, and financial reporting in governmental and non-profit (G&NP) organizations with emphasis on funds and fund accounting. It acquaints students with full knowledge of the budget cycle for governmental organizations. It also covers the financial accounting and reporting for colleges and universities and for health care organizations. Topics include Budgeting, accounting, auditing and financial reporting principles and practices for government and other nonprofit entities. **Prerequisite: ACCT 215**

ACCT 404 International Accounting (3 crs)
The objective of this course is to enhance the students’ ability to think through and resolve international accounting and financial reporting problems. Accounting principles and comparative practices are reviewed; inflation accounting and foreign currency translation; management control in the foreign environment, analysis of foreign financial statements, transfer pricing and international taxation are also treated. **Prerequisite: 4th Year Standing**

ACCT 405 Accounting Information Systems (AIS) (3 crs)
The course is an introduction to accounting information systems covering topics like intelligent systems for aiding decision making, documenting information systems, database management systems, relational database and SQL, internal control, and AIS applications. **Prerequisite: 4th Year Standing**

Economics

ECON 211 International Economics (3 crs)
In this course the students will be introduced to theories of international trade and international monetary economics. The theoretical background is used as a basis for discussion of policy issues, patterns of international trade and production, gains from trade, tariffs, and other impediments to trade, foreign exchange markets, measures of balance of payments, effects of monetary and fiscal policy, and devaluation and systems for the settlement of international payments. **Prerequisite: BUSS 203.**

ECON 212 Economics of the Gulf Region (3 crs)
This course provides a detailed historical and contemporary investigation of the Gulf Countries (GCC) economies, including the role of oil in economic growth, trade relations, development patterns, labor and economic integration. **Prerequisites: BUSS 203.**

ECON 213 Economics Development (3 crs)
This course studies the economic transformation of developing countries. It examines both standard models of economic growth and micro-level foundations of economic development; among the latter are the role of institutional arrangements, the absence of fully functioning markets and the functional role of income distribution. **Prerequisites: BUSS 203.**
Major: Finance

FINA 211 Money and Capital Markets (3 crs)
The course covers the concept of the utility and importance of money and capital market for a country’s financial system and the role they play in financial management and development of the financial system of the country. Topics covered are financial markets and their utility, the financial system and its constituents, Financial development in Oman, the role and impact of inflation on project decisions, the role of central bank in controlling the market, Features and functions of the money market, functions and features of the capital markets and their constituents and instrument used in both the markets. **Prerequisite: BUSS 105**

FINA 212 Commercial Bank Management (3 crs)
This course is a study of the functions and operations of financial institutions and provides an overview of the financial intermediary industry with an emphasis on commercial bank management. The course deals with financial decision-making procedures and policies of commercial banks and other types of financial institutions. The focus of this course is on regulatory environment, applications of financial engineering in risk management, and management of assets and liabilities of commercial banks, using the portfolio analysis approach and capital adequacy indicators. Topics covered include, financial analysis of bank statements, liquidity management, assets and liability management, bank profitability measurement, capital adequacy and banking regulations, duration and term structure of interest rates, market risk management. **Prerequisite: BUSS 105**

FINA 213 Financial Services (3 crs)
The course covers the available and important financial service in the world with special focus on the financial services and investment banking options available in Oman. The course is intended to give a understanding on the utilities of these services and the impact they make on the financial system. The course will help the students to have good understanding about insurance, mortgages market and the market for short term loans, hire purchase and leasing, mutual funds, credit cards, bills of exchange, venture capital, depository and custodial services and micro financing services in Oman. **Prerequisite: BUSS 105**

FINA 214 Islamic Finance (3 crs)
This course aims to provide the essential understanding of Islamic economics and Islamic finance, including the setting up of traditional Islamic financial tools and practices and the development of modern Islamic banking and financial instruments and institutions. The course examines and relates the theory of Islamic finance to recent development in Islamic banking and financial industry. Topic covered include money policy, profit sharing, Islamic financial and banking institutions and their operations, Islamic banking model and alternative models of financing and structuring of Islamic investment funds. **Prerequisite: FINA 211**
FINA 215 Risk Management (3 crs)
This course aims to give an introduction of the basic elements of risk theory and the techniques and procedures used by risk professionals to measure, manage and control of financial risk. This course covers the role of risk management in the financial institutions industry with real-world financial market applications. The topics covered include: risk identification, classification and measurement, risk control, emerging markets risks including currency crises, Value-at-Risk (delta-normal or parametric approach, historical simulation, risk budgeting, stress testing and event risk, liquidity risk, measuring and managing corporate exposures and measuring firm-wide risk. An integral part of the course is the foundation and advanced approach of financial risk as developed by the Bank of International Settlement (BIS) and Basel Committee on Banking Supervision. **Prerequisite:** FINA 211

FINA 401 Insurance (3 crs)
The major direction of this course is to introduce students to the various types of insurance contracts including life, health, property, and liability insurance, and the techniques of how to measure and manage risk in an innovative way in the insurance markets. This course also covers reinsurance and the competence to make the best use of insurance contracts and coverage. The course focuses on the fundamentals of insurance including interpretation of policies, property insurance, life insurance, liability insurance, health insurance, risk control tools, retirement plans and annuities, computation of insurance premiums, and the legal aspects of insurance. **Prerequisite:** FINA 211

FINA 402 Investment Management (3 crs)
This course introduces the students to the analysis of investment information, evaluation of risks and returns, and principles of portfolio selection in investment decisions. This course focuses on securities markets, investment risk-return tradeoff, asset pricing models, and stock price behavior in relation to capital market efficiency hypotheses. Particular emphasis is placed on stocks, bonds, mutual funds and financial futures and options contracts. Special prominence is given on the study of the operations of securities markets, investment policies, valuation of individual securities, and techniques of investing in securities. Topics covered include investment instruments and their characteristics, introduction to portfolio and capital market theory, theory of valuation of stocks, bonds and the term structure of interest rates, options, commodity and financial futures, investment companies and mutual funds, and international investments. **Prerequisite:** FINA 215 and BUSS 307

FINA 403 Behavioral Finance (3 crs)
The course aims to introduce the students to the concept of behavioral finance and its impact on financial markets and decision making. Investigates behavioral traits such as overconfidence, representativeness, and anchoring and loss aversion and demonstrates how these psychological phenomena impact on an individual's behavior. Other topics covered include the impact of behavioral
factors on stock market anomalies, capital structure, dividend policy and mergers and acquisitions. At the end of this course, students will understand the nature and impact of these psychological factors on many important business decisions. **Prerequisite: FINA 215**

FINA 404 Personal Financial Planning (3 crs)
The courses covers all aspect of personal Financial planning and management for any individual and includes personal investing goals and strategies; budgeting to match income and expenses; developing a savings plan; controlling expenses and credit usage; owning and financing a home; investment options and analysis, determining life, health, home, auto insurance needs; and retirement planning. **Prerequisite: 4th Year Standing**

FINA 405 International Financial Management (3 crs)
This course aims to provide a foundational knowledge of the international business environment as well as introduces ideas on how financial management helps multinational firms operate optimally in that environment. The course focuses on international financial management within the multinational firm and provides an understanding of international regulatory and environment differences, the different foreign exchange regimes, balance of payments, access to money and capital markets, use of derivatives to hedge exchange rate risk, measurement and management of exposure to exchange rate and interest rate fluctuations, and international diversification. Emphasis is on international financial decision-making through the extensive use of cases and real-world examples. **Prerequisite: 4th Year Standing**

Major: Insurance

INSR 211 Principles of Insurance (3 crs)
It will give an overall view of the principles and practices of insurance as a financial product. It covers the study of the principles on which insurance is formed, the contract, the business of life assurance and general insurance and their principles. It will also cover the insurance environment in Oman and its present position and future prospects. **Prerequisite: BUSS 105**

INSR 212 Principles of Risk (3 crs)
It covers the risks and its types and ways and means to tackle systematic risk and its risk reduction. Measures to eliminate unsystematic risk and procedure to be followed by any organization including good risk management policies and practices. **Prerequisite: BUSS 105**

INSR 213 Marketing of Insurance Products (3 crs)
The service marketing principles as applied to insurance product marketing. Salesmanship involved in prospecting and converting clients into customer. **Prerequisite: BUSS 103**

INSR 214 Personal and Health Insurance (3 crs)
Analysis and evaluation of personal health insurance need and innovating product to match the same. The concept of banc assurance as a good means to sell these products. **Prerequisite: INSR 211**

INSR 215 Insurance Practices and Policies in Oman
This course covers the entire gamut of products on offer in Oman in general insurance business and their principles. Understanding the system of developing new products given the environment of the country. **Prerequisite: INSR 211**

INSR 401 Fundamentals of Actuarial sciences
The concepts and principles of actuarial science and the role of actuary in life insurance products. Use and formulation of actuarial tables and calculation of price and premiums for an insurance product. **Prerequisite: BUSS 304.**

INSR 402 Risk analysis and Underwriting
This course covers the determination of pure risks and their handling and financing and the concept of underwriting as a tool to handle pure risks. **Prerequisite: BUSS 304**

INSR 403 Life Insurance
This course is designed to give the student a basic knowledge of the various types of life insurance products, liabilities and coverage peculiar to each one treated including basic principles of life insurance and annuities. Policy provisions, policy innovations, and the role of life insurance in financial planning are examined. **Prerequisite: INSR 215**

INSR 404 Property and liability Insurance
The course covers the property and various liability insurance products and their Computation. It also covers Fire, marine and Agricultural insurance. The objective is to give the learner a hand on experience and learning of the methods of providing insurance products and their benefits for liability and property insurance in the country. **Prerequisite: 4th Year Standing**

INSR 405 Islamic Insurance
This course deal with the concept of tawaful and the legal aspects and regulations governing the Islamic insurance business with special emphasis on the shariah compliance. The learner must become conversant with the provision of the law and its implication for the development of the Islamic insurance sector in the country. **Prerequisite: 4th Year Standing**
DEPARTMENT OF MANAGEMENT, MARKETING AND INFORMATION SYSTEMS

Department Officers

Chairperson: Khaliquzzaman Khan
Professor: Asim Al Araji
Associate Professor: Shanker Menon
Assistant Professors: Tariq Atiya, Tariq Al Hadi, Shouvik Sanyal, Moinuddin Ahmad
Lecturers: Charalampos Harry Mitsidis, Mohammed Wamique Hisam
Secretary: Samira Musan

Vision

To provide high quality and practical business education and research to meet the future needs of the country.

Mission

To provide relevant management knowledge and skills in an open learning environment that will have practical relevance at the work place and has benefit for the community at large. Our faculty members strive to excel in teaching in a student-centered environment, supported by research and service contributing to the professional and academic communities at the national and regional levels.

Programs Offered

The department offers courses in management, marketing, statistics, and Human Resources. Students can opt for a major in one of the following areas: management or marketing. The details for each major are as follows:

- Diploma in Business Administration - Management
- Diploma in Business Administration - Marketing
- Bachelor of Arts in Business Administration - Management
- Bachelor of Arts in Business Administration - Marketing

Management

Degrees Offered

- Diploma in Business Administration - Management
• Bachelor of Arts in Business Administration - Management

University requirements

The University requirements for all the programs consist of the following nine courses comprising 27 credit hours:
1. ARAB 101: Academic Writing in Arabic
2. CMPS 100B: Introduction to Technical Computing for the Sciences
3. ENGL 101A: Basic Academic English I
4. ENGL 102: Basic Academic English II
5. ENGL 203: Advanced Academic English I
6. ENGL 204: Advanced Academic English II
7. MATH 103: Mathematics for Social Sciences I
8. SOCS 102: Oman Society
9. SOCS 200: World Civilizations II

College requirements

The college requirements for all the programs consist of the following seventeen courses comprising 51 credit hours:
1. BUSS 101: Principles of Management
2. BUSS 102: Principles of Financial Accounting
3. BUSS 103: Principles of Marketing
4. BUSS 104: Principles of Management Accounting
5. BUSS 105: Principles of Financial Management
6. BUSS 106: Business and Information Technology
7. BUSS 201: Principles of Microeconomics
8. BUSS 203: Principles of Macroeconomics
9. BUSS 302: Business Law
10. BUSS 303: Corporate Finance
11. BUSS 304: Quantitative Methods in Business
12. BUSS 306: Strategic Management
13. BUSS 307: Statistics for Business
14. BUSS 401: Research Methods
15. BUSS 402: Business Communications
16. BUSS 403: Business Environment
17. BUSS 404: Final Year Project
18. BUSS 405: Internship in Business

Major compulsory requirements

The courses required for Management major are as follows:
1. MNGT 211: Human Resource Management
2. MNGT 212: Organizational Behavior
3. MNGT 213: Business Ethics
4. MNGT 214: International Management
5. MNGT 215: Operations Management
6. MNGT 401: Total Quality Management
7. MNGT 402: Leadership for Results
8. MNGT 403: Operations Research
9. MNGT 404: Project Management
10. MNGT 405: Small Business Management

Major General Electives:

This set consists of two courses comprising 6 credit hours. General Electives include all courses taken in the college and/or outside the college.

Social Science Electives:

This set consists of one course comprising 3 credit hours of social science electives. Social Science electives include all courses taken in psychology, sociology, and social work.

- PHIL 120: Introduction to Philosophy
- PSYC 150: Introduction to Psychology
- SOCS 110: History of Arabic and Islamic Civilization
- SOCS 150: Introduction to Sociology
- SOCS 210: Contemporary World Issues

Skill of Life Electives:

This set consists of one course comprising 3 credit hours. Skill of life electives include all courses taken in environmental studies, philosophy, psychology, and nutrition.

- ENVR 150: Introduction to Environmental Studies
- NUTR 150: Food and Nutrition
- PHIL 160: Critical and Creative Thinking
- PHIL 230: Principles of Professional Ethics
- PSYC 250: Personal Development
Plans of Study (POS) MANAGEMENT

<table>
<thead>
<tr>
<th>Year I</th>
<th>Term</th>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Fall</td>
<td>BUSS 101</td>
<td>Principles of Management</td>
<td>3</td>
<td>FPE 103C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BUSS 102</td>
<td>Principles of Financial Accounting</td>
<td>3</td>
<td>FPE 103C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMPS 100B</td>
<td>Introduction to Technical Computing for Science</td>
<td>3</td>
<td>FPT 102B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENGL 101A</td>
<td>Basic Academic English I</td>
<td>3</td>
<td>FPE 103C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 103</td>
<td>Mathematics for Social Sciences I</td>
<td>3</td>
<td>FPM 102B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total Credits</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) Spring</td>
<td>BUSS 103</td>
<td>Principles of Marketing</td>
<td>3</td>
<td>FPE 103C</td>
</tr>
<tr>
<td></td>
<td>BUSS 104</td>
<td>Principles of Management Accounting</td>
<td>3</td>
<td>BUSS 102</td>
</tr>
<tr>
<td></td>
<td>BUSS 105</td>
<td>Principles of Financial Management</td>
<td>3</td>
<td>BUSS 102</td>
</tr>
<tr>
<td></td>
<td>BUSS 106</td>
<td>Business and Information Technology</td>
<td>3</td>
<td>CMPS 100B</td>
</tr>
<tr>
<td></td>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
<td>3</td>
<td>ENGL 101A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Year II</td>
<td>Term</td>
<td>Course</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>--------</td>
<td>-------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>(3) Fall</td>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BUSS 201</td>
<td>Principles of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MNGT 211</td>
<td>Human Resource Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MNGT 212</td>
<td>Organization Behavior</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total Credits</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>(4) Spring</td>
<td>BUSS 203</td>
<td>Principles of Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MNGT 213</td>
<td>Business Ethics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MNGT 214</td>
<td>International Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MNGT 215</td>
<td>Operations Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOCS 102</td>
<td>Omani Society</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total Credits</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DIPLOMA IN MANAGEMENT (60 CREDITS)</td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>Course</td>
<td>Title</td>
<td>Credits</td>
<td>Pre-requisites</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>(5) Fall</td>
<td>BUSS 302</td>
<td>Business Law</td>
<td>3</td>
<td>BUSS 203</td>
</tr>
<tr>
<td></td>
<td>BUSS 303</td>
<td>Corporate Finance</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td></td>
<td>BUSS 304</td>
<td>Quantitative Methods in Business</td>
<td>3</td>
<td>MATH 103</td>
</tr>
<tr>
<td></td>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
<td>3</td>
<td>ENGL 203</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skills of Life Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>(6) Spring</td>
<td>BUSS 306</td>
<td>Strategic Management</td>
<td>3</td>
<td>BUSS 302</td>
</tr>
<tr>
<td></td>
<td>BUSS 307</td>
<td>Statistics for Business</td>
<td>3</td>
<td>BUSS 304</td>
</tr>
<tr>
<td></td>
<td>MNGT 401</td>
<td>Total Quality Management</td>
<td>3</td>
<td>MNGT 215</td>
</tr>
<tr>
<td></td>
<td>SOCS 200</td>
<td>World Civilization</td>
<td>3</td>
<td>ENGL 203</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social Science Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>BUSS 405</td>
<td>Internship in Business (Two Months)</td>
<td>0</td>
<td>8 Weeks</td>
</tr>
</tbody>
</table>

205
<table>
<thead>
<tr>
<th>Year IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(7) Fall</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Term</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(8) Spring</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

BACHELOR IN MANAGEMENT (120 CREDITS)

Course Description

MNGT 211 Human Resources Management (3 crs)

This course examines the basic activities involved in the managing of human resources, striking a balance between current theory and practice. This course focuses on the following topics: strategic human resource management, job analysis, manpower planning and recruitment employee selection processes, policy and procedures, interviewing candidates, training and developing employees, performance management and appraisal, managing careers, compensation and benefits, benefits and services, employee safety and health. In addition topics include the impact of globalization in the management of global human resources management. **Prerequisite: BUSS 101**

MNGT 212 Organizational Behavior (3 crs)

The aim of this course is to provide the student with basic ideas of behavioral dynamics in organizations at individual and group levels and their effects on organizational performance. The course covers basic principles of organization behavior (OM) and their applications in business organizations. Some of the topics include core concepts of OB, foundations of individual behavior in
organizations (perception, learning, motivation, personality, values, attitudes, and emotions) and group behavior (group types and development, structure, and processes, power, conflict, and leadership). Prerequisite: BUSS 101

MNGT 213 Business Ethics (3 crs)
This course introduces the student to the ethical dimensions of social responsibility in business and the application of ethical judgments to business decision making as they relate to the various stakeholders inside and outside the organization. Topics include ethical theory and the relationship between ethics and business, ethical decision making, ethical dilemmas in the workplace, ethical issues in marketing, purchase, finance and human resources, ethics and the environment, the role of trust and ethics, corporate governance and ethics, and corporate social responsibility. Prerequisite: BUSS 101 and ENGL 102

MNGT 214 International Management (3 crs)
This course focuses on the management challenges associated with developing strategies and managing the operations of companies whose activities stretch across national boundaries, especially in high-growth and developing economies. Specific topics will include market entry, forming alliances, managing growth and cross-border financing in different regions of the world. This course involves understanding the global political, legal, economic and technological environment, communicating across cultures, cross-cultural communication, global alliances and strategy implementation, staffing, training and compensating for global operations; Cross-cultural negotiation and decision making. These course students develop a world-view of the global marketplace. They learn how knowledge and understanding of the global environment affect business functions. Special consideration is given to key issues in ethics & social responsibility, global trade and investment organizations, and technology. Prerequisite: MNGT 211

MNGT 215 Operations Management (3 crs)
This course is designed to provide the student with an understanding of the foundations of the operations function in both manufacturing and services. Managing operations is vital to every organization. The course will analyze operations from both the strategic and operational perspectives and highlight the competitive advantages that operations can provide for the organization.

Topics include but not limited to Process Management and Capacity and Location Planning, Forecasting Total Quality Management / Six Sigma, Statistical Quality Control, Just-in-Time and Lean Systems, Aggregate Planning / Material Requirement Planning (MRP). Prerequisite: MNGT 211

MNGT 401 Total Quality Management (3 crs)
Total Quality Management is a powerful management tool that promotes process improvement, cost reduction and significant enhancement of bottom-line profitability. The purpose of this course is to thoroughly examine the concept of quality, to define it in terms that are useful for organizations, to survey the ideas of major quality thinkers and theorists, to develop proficiency in the use of quality tools, and to consider the challenges of quality program implementation in real business situations. Throughout the course we will
investigate similarities and differences between quality management in manufacturing and service contexts. This course will focus on understanding the different TQM philosophies, how to implement the principles and concepts inherent in a Total Quality Management (TQM) approach to managing a manufacturing or service organization, and assessment of the success of these strategies. Specific topics include TQM perspective, TQM Principles and Strategies, TQM tools and Quality Systems. **Prerequisite: MNGT 215**

MNGT 402 Leadership for Results (3 crs)
This course is designed to provide students with the opportunity to develop the essential knowledge and skills required of those who want to lead and/or facilitate successful change or transformation in individuals, groups, and/or organizations. This course helps students to become skilled at the understanding the process of change and transformation. This course examines the essence of leadership; its relationship to managing; and the behaviors, attitudes and perspectives that distinguish leaders. The course focuses on the theoretical bases of leadership including the theoretical traits, behaviors and situations as they relate to effective leadership. In addition, the course provides a survey of methods to sustain and develop both personal and organizational power, including the network-building and conflict-handling skills needed to manage the increasingly complex interests found in organizations. This course develops students’ abilities to motivate human resources, facilitate team building, and guide organizational change and other organizational initiatives, such as a quality management program. **Prerequisite: BUSS 306**

MNGT 403 Operations Research (3 crs)
Operations Research (OR) refers to the science of decision making. This course provides a survey of fundamental methods of Operations Research and their applications at an introductory level. The emphasis is on applications rather than the details of methodology. By the end of the course, students will be exposed to a wide variety of applications and problems that can be addressed using Operations Research techniques. Topics include in this course are linear programming (two and more than two decision variables), transportation and assignment problems, decision theory, game theory, inventory models, queuing models. **Pre-requisite: MNGT 215**

MNGT 404 Project Management (3 crs)
This course addresses the basic nature of managing general projects. The course uses the project life cycle. It covers the whole process of project management, including project initiation, project planning, project implementation and project termination. Topics will include: project life cycle, project selection, and work breakdown structure, critical path method, and project evaluation and review techniques, project risk management. **Pre-requisite: fourth Year Standing**

MNGT 405 Small Business Management (3 crs)
This course provides a survey of the basic concepts of starting a small business. The course covers the personal origins of motivation for entrepreneurship and
the skills, knowledge, and abilities of the entrepreneur. The course focuses on the creation of new ventures: the people, the process and the dynamics. Topics include: identifying and evaluating opportunities, success and failure factors, attitudes and characteristics of entrepreneurs, stand-alone and internal corporate ventures, and family businesses and how they evolve, and local and global issues in entrepreneurship. The course includes developing skills in choosing a location, conducting a feasibility analysis, understanding forms of business ownership, developing a marketing plan, financial plan, managing cash flow problems, developing effective pricing strategies. Students will learn to develop a viable business plan in the process. **Pre-requisite: fourth Year Standing**

Marketing

Degrees Offered

- Diploma in Business Administration – Marketing
- Bachelor of Arts in Business Administration - Marketing

University requirements

The University requirements for all the programs consist of the following nine courses comprising 27 credit hours:
1. ARAB 101: Academic Writing in Arabic
2. CMPS 100B: Introduction to Technical Computing for the Sciences
3. ENGL 101A: Basic Academic English I
4. ENGL 102: Basic Academic English II
5. ENGL 203: Advanced Academic English I
6. ENGL 204: Advanced Academic English II
7. MATH 103: Mathematics for Social Sciences I
8. SOCS 102: Oman Society
9. SOCS 200: World Civilizations II

College requirements

The college requirements for all the programs consist of the following seventeen courses comprising 51 credit hours:
1. BUSS 101: Principles of Management
2. BUSS 102: Principles of Financial Accounting
3. BUSS 103: Principles of Marketing
4. BUSS 104: Principles of Management Accounting
5. BUSS 105: Principles of Financial Management
6. BUSS 106: Business and Information Technology
7. BUSS 201: Principles of Microeconomics
8. BUSS 203: Principles of Macroeconomics
9. BUSS 302: Business Law
10. BUSS 303: Corporate Finance

209
11. BUSS 304: Quantitative Methods in Business
12. BUSS 306: Strategic Management
13. BUSS 307: Statistics for Business
14. BUSS 401: Research Methods
15. BUSS 402: Business Communications
16. BUSS 403: Business Environment
17. BUSS 404: Final year Project
18. BUSS 405: Internship in Business

Major Compulsory Requirements

The courses required for *Marketing* major are as follows:
- MKTG 211: Consumer Behavior
- MKTG 212: Marketing Communication
- MKTG 213: Service Marketing
- MKTG 214: Customer Relationship Management
- MKTG 215: Sales Management
- MKTG 401: Brand Management
- MKTG 402: E-Marketing
- MKTG 403: Retail Management
- MKTG 404: Supply Chain Management
- MKTG 405: International Marketing

Major General Electives:

This set consists of two courses comprising 6 credit hours. General Electives include all courses taken in the college and/or outside the college.

Social Science Electives:

This set consists of one course comprising 3 credit hours of social science electives. Social Science electives include all courses taken in psychology, sociology, and social work.
- PHIL 120: Introduction to Philosophy
- PSYC 150: Introduction to Psychology
- SOCS 110: History of Arabic and Islamic Civilization
- SOCS 150: Introduction to Sociology
- SOCS 210: Contemporary World Issues

Skill of Life Electives:

This set consists of one course comprising 3 credit hours. Skill of life electives include all courses taken in environmental studies, philosophy, psychology, and nutrition.
- ENVR 150: Introduction to Environmental Studies
- NUTR 150: Food and Nutrition
- PHIL 160: Critical and Creative Thinking
- PHIL 230: Principles of Professional Ethics
- PSYC 250: Personal Development

Plans of Study (POS) MARKETING

<table>
<thead>
<tr>
<th>Year I</th>
<th>Term</th>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Fall</td>
<td>BUSS 101</td>
<td>Principles of Management</td>
<td>3</td>
<td>FPE 103C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BUSS 102</td>
<td>Principles of Financial Accounting</td>
<td>3</td>
<td>FPE 103C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CMPS 100B</td>
<td>Introduction to Technical Computing for Science</td>
<td>3</td>
<td>FPT 102B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 101A</td>
<td>Basic Academic English I</td>
<td>3</td>
<td>FPE 103C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 103</td>
<td>Mathematics for Social Sciences I</td>
<td>3</td>
<td>FPM 102B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year I</th>
<th>Term</th>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) Spring</td>
<td>BUSS 103</td>
<td>Principles of Marketing</td>
<td>3</td>
<td>FPE 103C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BUSS 104</td>
<td>Principles of Management Accounting</td>
<td>3</td>
<td>BUSS 102</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BUSS 105</td>
<td>Principles of Financial Management</td>
<td>3</td>
<td>BUSS 102</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BUSS 106</td>
<td>Business and Information Technology</td>
<td>3</td>
<td>CMPS 100B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
<td>3</td>
<td>ENGL 101A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Year II

<table>
<thead>
<tr>
<th>Term</th>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
<td>FPE 103C</td>
</tr>
<tr>
<td></td>
<td>BUSS 201</td>
<td>Principles of Microeconomics</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td></td>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
<td>ENGL 102</td>
</tr>
<tr>
<td></td>
<td>MKTG 211</td>
<td>Consumer Behavior</td>
<td>3</td>
<td>BUSS 103</td>
</tr>
<tr>
<td></td>
<td>MKTG 212</td>
<td>Marketing Communication</td>
<td>3</td>
<td>BUSS 103</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4)</td>
<td>BUSS 203</td>
<td>Principles of Macroeconomics</td>
<td>3</td>
<td>BUSS 201</td>
</tr>
<tr>
<td></td>
<td>MKTG 213</td>
<td>Service Marketing</td>
<td>3</td>
<td>BUSS 103</td>
</tr>
<tr>
<td></td>
<td>MKTG 214</td>
<td>Customer Relationship Management</td>
<td>3</td>
<td>MKTG 211 & MKTG 212</td>
</tr>
<tr>
<td></td>
<td>MKTG 215</td>
<td>Sales Management</td>
<td>3</td>
<td>MKTG 211 & MKTG 212</td>
</tr>
<tr>
<td></td>
<td>SOCS 102</td>
<td>Omani Society</td>
<td>3</td>
<td>FPE 103C</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DIPLOMA IN MARKETING (60 CREDITS)
<table>
<thead>
<tr>
<th>Term</th>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5) Fall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BUSS 302</td>
<td>Business Law</td>
<td>3</td>
<td>BUSS 203</td>
</tr>
<tr>
<td></td>
<td>BUSS 303</td>
<td>Corporate Finance</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td></td>
<td>BUSS 304</td>
<td>Quantitative Methods in Business</td>
<td>3</td>
<td>MATH 103</td>
</tr>
<tr>
<td></td>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
<td>3</td>
<td>ENGL 203</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skills of Life Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>(6) Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BUSS 306</td>
<td>Strategic Management</td>
<td>3</td>
<td>BUSS 302</td>
</tr>
<tr>
<td></td>
<td>BUSS 307</td>
<td>Statistics for Business</td>
<td>3</td>
<td>BUSS 304</td>
</tr>
<tr>
<td></td>
<td>MKTG 401</td>
<td>Brand Management</td>
<td>3</td>
<td>MKTG 211</td>
</tr>
<tr>
<td></td>
<td>SOCS 200</td>
<td>World Civilization</td>
<td>3</td>
<td>ENGL 203</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social Science Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>BUSS 405</td>
<td>Internship in Business (Two Months)</td>
<td>0</td>
<td>8 Weeks</td>
</tr>
<tr>
<td>Term</td>
<td>Course</td>
<td>Title</td>
<td>Credits</td>
<td>Pre-requisites</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>-------------------------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>(7) Fall</td>
<td>BUSS 401</td>
<td>Research Methods</td>
<td>3</td>
<td>BUSS 307</td>
</tr>
<tr>
<td></td>
<td>BUSS 402</td>
<td>Business Communications</td>
<td>3</td>
<td>ENGL 204</td>
</tr>
<tr>
<td></td>
<td>MKTG 402</td>
<td>E-Marketing</td>
<td>3</td>
<td>MKTG 212</td>
</tr>
<tr>
<td></td>
<td>MKTG 403</td>
<td>Retail Management</td>
<td>3</td>
<td>MKTG 211</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General Elective I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>(8) Spring</td>
<td>BUSS 403</td>
<td>Business Environment</td>
<td>3</td>
<td>BUSS 302 & BUSS 306</td>
</tr>
<tr>
<td></td>
<td>BUSS 404</td>
<td>Final year Project</td>
<td>3</td>
<td>BUSS 401</td>
</tr>
<tr>
<td></td>
<td>MKTG 404</td>
<td>Supply Chain Management</td>
<td>3</td>
<td>4th year standing</td>
</tr>
<tr>
<td></td>
<td>MKTG 405</td>
<td>International Marketing</td>
<td>3</td>
<td>4th year standing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General Elective II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

BACHELOR IN MARKETING (120 CREDITS)

Course Description

MKTG 211 Consumer Behavior (3 crs)
This course studies marketing, psychology, sociology and cultural anthropology to determine motivations for product purchases. The course focuses on illustrating the use of behavioral science theory to create new products and promotional campaigns, explaining the consumers buying process, and internal and cultural factors that affect consumer buying decisions. **Prerequisite: BUSS 103**

MKTG 212 Marketing Communications (3 crs)
This course introduces the concepts, theories, an techniques for the creation and management of integrated marketing communications campaigns to promote a variety of products. The course focuses on the selection of promotional tools such as advertising, public relations, consumer and trade promotions, sponsorships, databases and direct marketing. The course demonstrates also the competitive nature of marketing communications. It
explores also the methods for assessing campaign effectiveness. **Prerequisite:** BUSS 103

MKTG 213 Services Marketing (3 crs)
This course examines service-related issues, practice and strategy in business organizations. The course includes the following topics: marketing analysis of service quality, service gaps, consumer expectations, service delivery strategies and customer relationship management. The course builds on marketing concepts from other courses and applies them specifically to service industry settings. **Prerequisite:** BUSS 103

MKTG 214 Customer Relationship Management (3 crs)
This course introduces the concept, theories, and techniques of CRM to students. The course covers topics such as; customer analysis and classifications, building customer databases, CRM techniques, and software uses in CRM. The course focuses also on the use CRM strategies in designing competitive marketing strategies. **Prerequisite:** MKTG 211 and MKTG 212

MKTG 215 Sales Management (3 crs)
This course introduces the concepts and techniques of professional sales and sales force management. The course illustrates the steps of effective selling and develops student skills in planning a sales program, organizing the selling effort and in recruiting, training and motivating the sales force. **Prerequisite:** MKTG 211 and MKTG 212

MKTG 401 Brand Management (3 crs)
This course introduces the concept of brand and steps involved in building strong brands and maximizing the value of existing brands. The course examines a framework for understanding when and why consumers care about brands, and introduces tools for measuring brand equity. The course illustrates also the business process of mission and strategy creation through brand and identity development and execution. **Prerequisite:** MKTG 211

MKTG 402 E-Marketing (3 crs)
This course examines how electronic devices such as the Internet, mobile phones, and other electronic devices are used for marketing purposes. The course covers concepts and techniques followed by prominent companies in developing e-marketing strategies like Internet marketing, mobile marketing, and viral marketing. The course includes also competitive strategies of companies in their presence in the Web. **Prerequisite:** MKTG 212

MKTG 403 Retail Management (3 crs)
This course explores marketing in large and small retail institutions. The course includes the following topics: retail strategy, store layout, buying, merchandising, pricing, promotion, inventory management, customer service, control, store image, trading area and location selection. **Prerequisite:** MKTG 211

MKTG 404 Supply Chain Management (3 crs)
The aim of this course is to provide the student with basic ideas of supply chain management. The course covers basic concepts of supply chain management (SCM) and its importance in business organizations. Some of the topics include purchasing management, supplier relationship management, logistics management, performance measurement, and supply chain integration.

Prerequisite: Fourth year standing

MKTG 405 International Marketing (3 crs)

This course provides a comprehensive understanding of the issues and challenges inherent in the formulation and implementation of international marketing strategies. The course examines and analyzes environmental forces affecting international marketing decisions, selection of international target markets and the design and development of international marketing plans.

Prerequisite: Fourth year standing
Management of Information Systems

Officers

Chairperson Tareq Alhousary
Assistant Professors Mohammad Aref, Mirsobit Mirusmonov

Vision

To become a recognized unit of MIS that provides quality knowledge to students and quality consultation and solutions to industry.

Mission

To provide knowledge and skills on management information systems in an open learning environment that will have practical relevance at the work place and has benefit for the community at large. Our faculty members strive to excel in teaching in a student-centered environment, supported by research and service contributing to the professional and academic communities at the national and regional levels.

Programs Offered

The Department of MIS offers two programs of study: bachelor and diploma levels. Both MIS programs combine variety of courses that can build a coherent MIS body of knowledge with graduates. The details for each program are as follows:

- Diploma in Business Administration - Management Information Systems (MIS)
- Bachelor of Arts in Business Administration - Management of Information Systems (MIS)

University requirements

The University requirements for all the programs consist of the following nine courses comprising 27 credit hours:

1. ARAB 101: Academic Writing in Arabic
2. CMPS 100B: Introduction to Technical Computing for the Sciences
3. ENGL 101A: Basic Academic English I
4. ENGL 102: Basic Academic English II
5. ENGL 203: Advanced Academic English I
6. ENGL 204: Advanced Academic English II
7. MATH 103: Mathematics for Social Sciences I
College requirements

The college requirements for all the programs consist of the following seventeenth courses comprising 51 credit hours:

1. BUSS 101: Principles of Management
2. BUSS 102: Principles of Financial Accounting
3. BUSS 103: Principles of Marketing
4. BUSS 104: Principles of Management Accounting
5. BUSS 105: Principles of Financial Management
6. BUSS 106: Business and Information Technology
7. BUSS 201: Principles of Microeconomics
8. BUSS 203: Principles of Macroeconomics
9. BUSS 302: Business Law
10. BUSS 303: Corporate Finance
11. BUSS 304: Quantitative Methods in Business
12. BUSS 306: Strategic Management
13. BUSS 307: Statistics for Business
14. BUSS 401: Research Methods
15. BUSS 402: Business Communications
16. BUSS 403: Business Environment
17. BUSS 404: Final Year Project

Major Compulsory Requirements

The courses required for Management Information Systems major are as follows:

1. MISS 211: Introduction to Information Systems
2. MISS 212: Business Programming
3. MISS 213: Introduction to E-Commerce
4. MISS 214: Systems Analysis and Design
5. MISS 215: Database Development
6. MISS 401: Application Software and Web Development
7. MISS 402: Business Data Communication and Network
8. MISS 403: E-Government
9. MISS 404: Business Intelligence and Decision Support System
10. MISS 405: Database Analysis and Design

Major General Electives:

This set consists of two courses comprising 6 credit hours. General Electives include all courses taken in the college and/or outside the college.

Social Science Electives:
This set consists of one course comprising 3 credit hours of social science electives. Social Science electives include all courses taken in psychology, sociology, and social work.

- PHIL 120: Introduction to Philosophy
- PSYC 150: Introduction to Psychology
- SOCS 110: History of Arabic and Islamic Civilization
- SOCS 150: Introduction to Sociology
- SOCS 210: Contemporary World Issues

Skill of Life Electives:

This set consists of one course comprising 3 credit hours. Skill of life electives include all courses taken in environmental studies, philosophy, psychology, and nutrition.

- ENVR 150: Introduction to Environmental Studies
- NUTR 150: Food and Nutrition
- PHIL 160: Critical and Creative Thinking
- PHIL 230: Principles of Professional Ethics
- PSYC 250: Personal Development

Plans of Study (POS) MANAGEMENT of INFORMATION SYSTEMS

<table>
<thead>
<tr>
<th>Year I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1 (Fall)</td>
</tr>
<tr>
<td>Code</td>
</tr>
<tr>
<td>BUSS 101</td>
</tr>
<tr>
<td>BUSS 102</td>
</tr>
<tr>
<td>CMPS 100B</td>
</tr>
<tr>
<td>ENGL 101A</td>
</tr>
<tr>
<td>MATH 103</td>
</tr>
<tr>
<td>Total Credits</td>
</tr>
</tbody>
</table>

| Semester 2 (Spring) |
Code	Course Title	Credits	Pre-requisites
BUSS 103	Principles of Marketing	3	FPE 103C
BUSS 104	Principles of Management Accounting	3	BUSS 102
BUSS 105	Principles of Financial Management	3	BUSS 102
BUSS 106	Business and Information Technology	3	CMPS 100B
ENGL 102	Basic Academic English II	3	ENGL 101A
Total Credits	15		
Year II

Semester 3 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
<td>FPE 103C</td>
</tr>
<tr>
<td>BUSS 201</td>
<td>Principles of Microeconomics</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
<td>ENGL 102</td>
</tr>
<tr>
<td>MISS 211</td>
<td>Introduction to Information Systems</td>
<td>3</td>
<td>BUSS 106 CMPS 100B</td>
</tr>
<tr>
<td>MISS 212</td>
<td>Systems Analysis and Design</td>
<td>3</td>
<td>BUSS 106 CMPS 100B</td>
</tr>
</tbody>
</table>

Total Credits: 15

Semester 4 (Spring)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 203</td>
<td>Principles of Macroeconomics</td>
<td>3</td>
<td>BUSS 201</td>
</tr>
<tr>
<td>MISS 213</td>
<td>Business Programming</td>
<td>3</td>
<td>BUSS 106 CMPS 100B</td>
</tr>
<tr>
<td>MISS 214</td>
<td>Introduction to E-Commerce</td>
<td>3</td>
<td>MISS 211</td>
</tr>
<tr>
<td>MISS 215</td>
<td>Database Development</td>
<td>3</td>
<td>MISS 212</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
<td>3</td>
<td>FPE 103C</td>
</tr>
</tbody>
</table>

Total Credits: 15

DIPLOMA IN MIS (60 CREDITS)

Year III

Semester 5 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 302</td>
<td>Business Law</td>
<td>3</td>
<td>BUSS 203</td>
</tr>
<tr>
<td>BUSS 303</td>
<td>Corporate Finance</td>
<td>3</td>
<td>BUSS 105</td>
</tr>
<tr>
<td>BUSS 304</td>
<td>Quantitative Methods in Business</td>
<td>3</td>
<td>MATH 103</td>
</tr>
<tr>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
<td>3</td>
<td>ENGL 203</td>
</tr>
<tr>
<td></td>
<td>Skills of Life Elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 15

Semester 6 (Spring)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 306</td>
<td>Strategic Management</td>
<td>3</td>
<td>BUSS 302</td>
</tr>
<tr>
<td>BUSS 307</td>
<td>Statistics for Business</td>
<td>3</td>
<td>BUSS 304</td>
</tr>
<tr>
<td>MISS 401</td>
<td>Application Software and Web Development</td>
<td>3</td>
<td>MISS 215</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilization</td>
<td>3</td>
<td>ENGL 203</td>
</tr>
<tr>
<td></td>
<td>Social Science Elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 15

Summer | **BUSS 405** | Internship in Business (Two Months) | 0 | 8 Weeks

220
Year IV

Semester 7 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 401</td>
<td>Research Methods</td>
<td>3</td>
<td>BUSS 307</td>
</tr>
<tr>
<td>BUSS 402</td>
<td>Business Communications</td>
<td>3</td>
<td>ENGL 204</td>
</tr>
<tr>
<td>MISS 402</td>
<td>Business Data Communication and Network</td>
<td>3</td>
<td>MISS 215</td>
</tr>
<tr>
<td>MISS 403</td>
<td>E-Government</td>
<td>3</td>
<td>MISS 215</td>
</tr>
<tr>
<td></td>
<td>Major General Elective I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Semester 8 (Spring)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 403</td>
<td>Business Environment</td>
<td>3</td>
<td>BUSS 302 & BUSS 306</td>
</tr>
<tr>
<td>BUSS 404</td>
<td>Final year Project</td>
<td>3</td>
<td>BUSS 401</td>
</tr>
<tr>
<td>MISS 404</td>
<td>Business Intelligence and Decision Support</td>
<td>3</td>
<td>4th year standing</td>
</tr>
<tr>
<td>MISS 405</td>
<td>Database Analysis and Design</td>
<td>3</td>
<td>4th year standing</td>
</tr>
<tr>
<td></td>
<td>Major General Elective II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

BACHELOR IN MIS (120 CREDITS)

Course Description

MISS 211 Introduction to Information Systems (3 crs)
This course forms the main gateway to the management information systems (MIS) area. For this, students are exposed to the general concept of MIS and how information system (IS) differs from information technology (IT). The students are introduced through this course to the main topics in the MIS field including: database development, business programming, system analysis and design, e-commerce, web applications and development. Reaching the purpose of the course is realized through the integration of lectures, discussions, lab practices and assignments prerequisite: CMPS 100B or BUSS 106

MISS 212 Business Programming (3 crs)
This course provides an exposure to algorithm development, programming, computer concepts, the design and application of data and file structures. It includes the use of logical and physical structures for both programs and data. It introduces students to business programming applications by providing them with the skills necessary to design and implement programs for user interfaces. This course covers fundamentals of object-oriented program development using top-down design, structured programming and debugging, testing and implementation, and elementary data structures. Visual Basic is used as the software tool for students to learn about the fundamentals of programming for business applications. Topics include: data structures and presentation: characters, records, and files; precision of data; information representation, organization, and storage; algorithm development; programming control structures; program correctness; verification, and validation; file structures and
representation; programming in traditional and visual development environments that incorporate event-driven, object-oriented design.

Prerequisite: CMPS 100B or BUSS 106

MISS 213 Introduction to E-Commerce (3 crs)
This course focuses on the linkage between organizational strategy and networked information technologies of business models in the national and global contexts connecting individuals, businesses, governments, and other organizations to each other. The course provides an introduction to e-commerce strategy and the development and architecture of e-commerce solutions and their components. This course examines the electronic methods of delivering products, services and exchanges in inter-organizational, national, and global environments. Information technology strategy and technological solutions for enabling effective business processes within and between organizations in a global environment are considered. It includes Business models, technology architectures for e-commerce, supply chain management, consumer behavior within electronic environments, legal and ethical issues, information privacy and security, data flows, information accuracy and error handling, site design, Internet standards and methods, design of solutions for the Internet, intranets, and extranets, EDI, payment systems, support for inbound and outbound logistics. **Prerequisite: CMPS 100B or BUSS 106**

MISS 214 Systems Analysis and Design (3 crs)
This course examines the systems development and modification process. Structured and object oriented analysis and design, use of modeling tools, adherence to methodological life cycle and project management standards. This course is viewed as the cornerstone upon which all subsequent information systems activities are based. Skills learned in this course will be applied again and again throughout the student’s college and MIS careers. It includes Life cycle phases: requirements determination, logical design, physical design, and implementation planning; interpersonal skills, interviewing, presentation skills; group dynamics; risk and feasibility analysis; group-based approaches: project management, joint application development JAD, and; structured, object oriented methodologies; RAD, prototyping; database design; software package evaluation, acquisition, and integration; global and inter-organizational issues and system integration. **Prerequisite: MISS 211**

MISS 215 Database Developments (3 crs)
This course aims to provide students with comprehensive understanding of Database Technology introducing the applications in business that raise productivity & the importance of data management in the business organizations. The students will be able to understand the database principles, issues and development methods including conceptual modeling, logical and physical design, and implementation. Specially, the focus will be on applications and utilize (Oracle PL/SQL), concepts of RDBMS & SQL Commands & Functions. The students will gain additional understanding of how to Analyze, Design, Program and Implement the Database system. **Prerequisite: MISS 212**

MISS 401 Application Software and Web Developments (3 crs)
This course provides the students with experience in the design and implementation of Internet Web sites for business applications. Topics include Web page design, various markup languages (e.g. HTML and XHTML), scripting languages (JavaScript), Tables, Image Manipulation, Graphic formats, Image maps, Forms, the principle of control statements, Frames, Cascading style sheets, Adobe Master Collection CS3 to create interactive, animated content. The design aspect of the class is as important as the quality of the HTML and JavaScript codes. **Prerequisites: MISS 215**

MISS 402 Business Data Communication and Networks (3 crs)
The primary goal of this course is to enable the students understand the basic concepts in data networking. It takes a practical approach to the principle and practices of system context requirements, development and use. This includes: Data communication and Telecommunication, Data communication components, Physical structure, Network topologies (Mesh, Star, Bus, Ring and hybrid), Protocols and Standards, Categories of network (local Area Networks (LANs) and Wide Area Networks (WANs). In addition, it will explain important topics in the field like PC networking and the Internet; Network models (OSI model); layered Architectures, Data and signals, Digital Transmission, Analog Transmission, Bandwidth Utilization, Switching, WWW and HTTP; Network Management; Multimedia and Network Security. **Prerequisites: MISS 215**

MISS 403 E-Government (3 crs)
This is a basic (fundamental) course on electronic governance. This course deals with the Information and Communication Technology and its use by various Government Departments as a tool to provide **Efficient Governance** to the people. It focuses but not limited to the reasons to adopt E-governance, Planning and Challenges to E-Government, Interoperations, Supervision, better services to Society and Management of E-Government projects. The E-government Academic Program is dealing with the way in which Internet Technologies (IT) are affecting how people interact with government and how government, in turn, are using and managing technology to better provide information and services to the public. **Prerequisites: MISS 215**

MISS 404 Business Intelligence and Decision Support (3 crs)
This course focuses on the design types, and use of computer-based information systems to assist human decision-making processes. The course addresses the integration of decision support systems into an organizational context which have taken on a more significant role, and deals with both individual and group decision-making. The development, implementation, and deployment of decision support and expert systems are covered. It includes decision support and decision making; it’s concept, applications; organizational issues; hardware and software technologies; data-model-user relationships; user interfaces; implementation strategies; data warehousing and mining; knowledge management; intelligent systems development. **Prerequisites:**

Fourth Year standing

MISS 405 Database Analysis and Design (3 crs)
The aim of this course is to provide the students with an opportunity to apply the skills and knowledge gained in all MIS courses to a real Information Systems development project. It provides an opportunity to learn through supervised experience how to carry out a small Information System Development project, including: project definition, Planning, Analysis, Designing & implementation processes. It consists of gathering information, use of Process and Data model. Oracle software application (SQL, Graph builder, form builder, Query builder & report builder) can be used as database tool for implementation. The final evaluation based on project report and presentation. **Prerequisites: Fourth Year Standing**
COLLEGE OF ENGINEERING (CE)
COLLEGE OF ENGINEERING

Officers of the College
Dean of the College (Acting) Heba Hassan

Organization Structure
The College of Engineering constitutes the following five departments: (a) Chemical Engineering, (b) Civil and Environmental Engineering, (c) Electrical and Computer Engineering, (d) Graphic Design and Interior Architecture Engineering, and (e) Mechanical and Mechatronics Engineering.

Vision
The College of Engineering at DU foresees a future in which its graduates are branded for their breadth and depth of knowledge, exemplary technical and personal skills, awareness of the world around them, commitment to excellence, passion to achieve, and for their abilities to work in and manage diverse teams.

Mission
The College shall create the conditions that promote academic excellence, nurture responsibility, breed professionalism, drive personal growth so that students define their purpose and develop the skills and character that enable them to transform 21st century challenges into possibilities, advance their lives, affect their community, and impact the world.

Academic Programs
The College of Engineering admits students to the following undergraduate degree programs:

- Diploma in Civil Engineering (CVE)
- Diploma in Chemical Engineering (CHE)
- Diploma in Electrical and Computer Engineering (ECE)
- Diploma in Mechanical Engineering (ME)
- Diploma in Mechatronics Engineering (MTE)
- Diploma in Interior Architecture Engineering (IAE)
- Diploma in Graphic Design (GD)
- Bachelor of Science in Chemical Engineering (CHE)
- Bachelor of Science in Civil Engineering (CVE)
- Bachelor of Science in Computer and Communications Engineering (CCE)
- Bachelor of Science in Electrical and Electronics Engineering (EEE)
- Bachelor of Science in Mechanical Engineering (ME)
• Bachelor of Science in Mechatronics Engineering (MTE)
• Bachelor of Interior Architecture Engineering (IAE)
• Bachelor of Graphic Design in Graphic Design (GD)

ABET Compliance

All engineering programs offered in the CE are designed to comply with the requirements of the OAAA and Accreditation Board for Engineering and Technology (ABET) standards. It includes courses in basic sciences and mathematics, engineering sciences, engineering design, English composition, and the humanities and social sciences. Laboratory hands-on experience and emphasis on design are important elements that are integrated throughout the curriculum.

The requirements pertaining to Criterion 4 (Professional Component) of the ABET EC2000 specify subject areas appropriate to engineering but do not prescribe specific courses. The College of Engineering must ensure that the program curriculum devotes adequate attention and time to each component, consistent with the objectives of the program and institution. Students must be prepared through the curriculum for engineering practice culminating in a major design experience based on the knowledge and skills acquired in earlier coursework and incorporating engineering standards and realistic constraints that include most of the following considerations: economic, sustainability, manufacturability, environmental, ethical, health and safety, and social. The professional component must include:

• One year of a combination of college level mathematics and basic sciences (some with experimental experience) appropriate to the discipline,
• One and a half years of engineering topics, to include engineering principles and engineering design appropriate to the student’s field of study, and
• A general education component that complements the technical content of the curriculum and is consistent with the program and institution objectives.

Graduation Requirements

To receive a Bachelor Degree in any of the majors in the College of Engineering, the student must satisfactorily complete the required credit hours for his/her major with an overall minimum average of 65 percent, and a cumulative average of 70 percent in the major courses. The total number of required credits varies by major and by placement level in English. The following table summarizes the number of credits normally required for each Bachelor granting program in the CE.
The program requirements consist of three components as detailed below.

University requirements

A student working for a bachelor degree in an engineering program must complete a total of 27 credit hours of general educational (university) requirements distributed as follows:

- 3 credits of Arabic: ARAB 101 (Academic Writing in Arabic)
- 6 credits of Social and Cultural Studies: SOCS 102 (Omani Society), and SOCS 200 (World Civilization II)
- 12 credits of English communication skills: ENGL 101 (Basic Academic English I), ENGL 102 (Basic Academic English II), ENGL 203 (Advanced Academic English I), and ENGL 280 (Business English).
- 3 credits of computer literacy: CMPS 100B (Introduction to Technical Computing for the Sciences)
- 3 credits of mathematics: MATH 199 (Calculus I).

The 30 credit hours of general educational requirements for the Graphic Design and Interior Architecture programs are distributed as follows:

- 3 credits of Arabic: ARAB 101 (Academic Writing in Arabic)
- 6 credits of Social and Cultural Studies: SOCS 102 (Omani Society), and SOCS 200 (World Civilization II)
• 12 credits of English Communication Skills: ENGL 101 (Basic Academic English I), ENGL 102 (Basic Academic English II), ENGL 203 (Advanced Academic English I), and ENGL 204 (Advanced Academic English II).
• 3 credits of computer literacy: CMPS 100A (Introduction to Technical Computing for the Arts)
• 3 credits of mathematics: MATH 103 (Mathematics for Social Sciences).

College requirements

The college requirements for engineering majors include 39 credits (36 credits for Civil Engineering), of which:

• 24 credits are in humanities and sciences: one humanities or social science elective, one science elective, one general elective (except for Civil Engineering), MATH 200, MATH 205, MATH 210, MATH 335, PHYS 170, and,
• 15 credits of engineering courses: ENGR 100, ENGR 110, ENGR 105, ENGR 300, EECE 130, CHEE/CIVE/EECE/MECH/TRON 400, CHEE/CIVE/EECE/MECH/TRON 401, and CHEE/CIVE/EECE/MECH/TRON 402).

Program (Major) Requirements

Program requirements for the bachelor degree vary (depending on the chosen major) from 57 to 98 credit hours from inside and outside the department in which the student is enrolled, including major-specific electives, with variation by major. Note that general electives are detailed in the first section of this catalogue. The university, college, and program requirements for the bachelor degrees in the different engineering majors are listed hereafter.

General Engineering Courses

To meet the College requirements, a set of general engineering courses are offered in all programs (except for the GDIA Department). The following are the outlines of these courses.

ENGR 100 Introduction to Engineering (3 crs)
This course introduces engineering students to engineering communication and ethics, report writing, dimensions and units - length, time, mass, force, temperature, electric current - and their related parameters - energy and power. **Prerequisite:** FPE 100C, FPM 100B, FPT 100B.

ENGR 105 Engineering Graphics (2 crs)
This course covers geometrical construction, orthographic projection, first angle and third angle projections, drawing convention or standards, sections, dimensions, oblique and isometric, tolerances, limits and fits. Students will also learn how to prepare engineering drawings using Computer Aided Drawing (CAD) software such as AutoCAD and solid work. **Prerequisites:** FPE 100C, FPM 100B, FPT 100B.
ENGR 110 Engineering Workshop (1 cr)
This course covers five sections. 1) Lathe - machine components and different operations; 2) Basic principles of arc (AC and DC) and gas welding; 3) machine-shop, basic principle of milling, grinding, and drilling machines; 4) soldering of electronic components, and 5) electric wiring. The course includes hands-on practical experience on various machines. Prerequisite: FPE 100C, FPM 100B.

ENGR 300 Engineering Economy (3 crs)
This course introduces economic decision processes in the design and implementation of real engineering projects; investment, financing, depreciation, economic selection, and replacement.

ENGR 352 Engineering Ethics (3 crs)
This course introduces term values, definition and importance of engineering ethics; engineering ethics from Islamic perspectives; various approaches to engineering ethics; common ethical problems; ethical decision making process; development of ethical organization culture; case studies in engineering and environmental ethics.

Practical Training
All fourth year BS engineering students are required to acquire practical training experience through a summer internship period of eight weeks. This graduation requirement ensures that each student gains practical training experience during the summer prior to graduation, with either a company or another academic institution.

Diploma students also are required to undergo the summer internship by the end of the second year.

Final Year Project
As part of their fourth year, students are required to carry out a project and submit a technical report. This project is a substantial piece of work that will require creative activity and original thinking. Students (Individually or in groups, normally three per group), are supervised while working on a project accounting for three-credits (8 credits for GDIA Department), extending over a full academic year. The project aims to provide students with a transitional experience from the academic world to the professional world. It is designed to serve as a platform in which students in teams engage in a meaningful design experience requiring the solution of engineering design projects.
DEPARTMENT OF CHEMICAL ENGINEERING

Personnel

Department Chairperson: Wazwaz, Aref
Associate Professor: Wazwaz, Aref
Assistant Professor: Ibrehem, Ahmmed
Laboratory Technician: Arshad, Malik Waqar

Mission

The mission of the Department of Chemical Engineering is to provide high school graduate students with a strong foundation in the technical aspects of chemical engineering as well as communication, teamwork, and problem-solving skills required for professional success. This is achieved through offering students high quality education supported by practical skills, scientific and technological breakthroughs of knowledge and professional training in the field.

Objectives

The objectives of the program are to:

- Promote excellence in education since the programs offered by the department deliver an American-style education of the highest standards compatible with the guidelines of the US Accrediting Board for Engineering and Technology (ABET), and the Omani Authority for Academic Accreditation (OAAA).
- Promote excellence in research since program graduates will be expected to conduct innovative and independent research activities.
- Provide services to the community at large with special consideration to the needs and circumstances of the Sultanate of Oman, and the region.
- Prepare students for leadership roles in a highly competitive and challenging environment in major fields of chemical engineering such as industry, government and academia.
- Prepare students for life-long learning, critical and independent thinking, sound judgment, professional ethics, and innovation.

Learning Outcomes

Each student graduating from the chemical engineering program will have:

1. A deep knowledge of the chemical engineering major, familiarity with professional opportunities, and knowledge of contemporary issues.
2. Practical experience with chemical process equipment, handling of chemicals, chemical analysis, and process instrumentation.
3. An ability to use the modern engineering tools necessary for engineering practice.
4. An ability to define and solve engineering problems, including the utilization of creative and innovative skills.
5. An ability to communicate ideas effectively in both oral and written forms.
6. Proficiency in core Chemical Engineering working knowledge, including safety and environmental aspects.

Degrees Offered

The CHE Department offers the following degrees:

- Diploma in Chemical Engineering
- Bachelor of Science in Chemical Engineering
- Minor in Petroleum Engineering

Career Opportunities

Graduates of the CHE program will have many career choices spanning a wide range of engineering fields. Most notable are: petroleum and natural gas industries, pharmaceuticals, chemical plants, power generation, water treatment, healthcare, design and construction. Graduates will have employment opportunities in various manufacturing processes such as those involving petrochemicals and polymers, food processing, semiconductors, microelectronics and advanced electronic materials. Innovative fields include biotechnology, environmental health and safety, and many other related industries.

Program Overview

The BS in CHE curriculum is designed to comply with the requirements of ABET accreditation. It includes at least 30 credit hours of basic sciences and mathematics, at least 66 credit hours of engineering sciences, engineering design, communications skills, and at least 15 credit hours of humanities and social sciences, excluding language and technical writing courses. Lab hands-on experience and emphasis on design are important elements that are integrated throughout the curriculum.

The curriculum is designed to grant students the Bachelor of Sciences degree upon the successful completion of the four-year program. The first common year with other engineering majors allows students to switch between the engineering majors at the start of the second year of their study.

The university, college, and program requirements for the degree in the chemical engineering major are listed in the College introductory pages.
Study Plan

<table>
<thead>
<tr>
<th>Year I</th>
<th></th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>CMPS 100B</td>
<td>3</td>
<td>Introduction to Technical Computing for the Sciences</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>3</td>
<td>Basic Academic English I</td>
</tr>
<tr>
<td>MATH 199</td>
<td>3</td>
<td>Calculus I</td>
</tr>
<tr>
<td>CHEM 130</td>
<td>3</td>
<td>Chemical Principles I</td>
</tr>
<tr>
<td>CHEM 130L</td>
<td>1</td>
<td>Chemistry Laboratory</td>
</tr>
<tr>
<td>ENGR 105</td>
<td>2</td>
<td>Engineering Graphics</td>
</tr>
<tr>
<td>Spring Semester</td>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>EECE 130</td>
<td>3</td>
<td>Computers and Programming I</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>3</td>
<td>Basic Academic English II</td>
</tr>
<tr>
<td>ENGR 100</td>
<td>3</td>
<td>Introduction to Engineering</td>
</tr>
<tr>
<td>MATH 200</td>
<td>3</td>
<td>Calculus II</td>
</tr>
<tr>
<td>CHEM 170</td>
<td>3</td>
<td>Chemical Principles II</td>
</tr>
<tr>
<td>ENGR 110</td>
<td>1</td>
<td>Engineering Workshop</td>
</tr>
<tr>
<td>Summer Semester</td>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>3</td>
<td>Advanced Academic English I</td>
</tr>
<tr>
<td>MATH 205</td>
<td>3</td>
<td>Calculus III</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>3</td>
<td>Omani Society</td>
</tr>
<tr>
<td>Year II</td>
<td></td>
<td>18 Credits</td>
</tr>
<tr>
<td>Fall Semester</td>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>PHYS 170</td>
<td>3</td>
<td>Fundamentals of Physics I</td>
</tr>
<tr>
<td>CHEM 260</td>
<td>3</td>
<td>Analytical Chemistry</td>
</tr>
<tr>
<td>CHEE 270</td>
<td>3</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>CHEE 275</td>
<td>3</td>
<td>Thermodynamics</td>
</tr>
<tr>
<td>CHEE 201</td>
<td>3</td>
<td>Principles of Chemical Engineering</td>
</tr>
<tr>
<td>CHEM 210</td>
<td>3</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>Spring Semester</td>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>ARAB 101</td>
<td>3</td>
<td>Academic Writing in Arabic</td>
</tr>
<tr>
<td>PHYS 170L</td>
<td>1</td>
<td>Introductory Physics Laboratory</td>
</tr>
<tr>
<td>CHEM 250</td>
<td>3</td>
<td>Organic Chemistry II</td>
</tr>
<tr>
<td>CHEM 250L</td>
<td>1</td>
<td>Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>CHEM 370</td>
<td>3</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>CHEE 208</td>
<td>3</td>
<td>Instrumentation</td>
</tr>
<tr>
<td>CHEE 280</td>
<td>3</td>
<td>Mass Transfer</td>
</tr>
<tr>
<td>Semester</td>
<td>Credits</td>
<td>Code</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Summer Semester</td>
<td>0</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>MATH 335</td>
<td>Mathematics for Science and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 300</td>
<td>Computational Methods</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 310</td>
<td>Reactive Process Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MATH 210</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 280</td>
<td>Business English</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Spring Semester</td>
<td>16 Credits</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilizations II</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 380</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 470</td>
<td>Chemical Process Dynamics and Control</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 300</td>
<td>Engineering Economy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical Electives</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Summer Semester</td>
<td>0 Credits</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>C</td>
<td>Practical Training</td>
<td>0</td>
</tr>
<tr>
<td>Year IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>CHEE 401</td>
<td>Final Year Project I</td>
<td>0</td>
</tr>
<tr>
<td>CHEE 410</td>
<td>Separation Processes</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 420</td>
<td>Chemical Engineering Process Design</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 430</td>
<td>Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 440</td>
<td>Introduction to Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Spring Semester</td>
<td>16 Credits</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>CHEE 402</td>
<td>Final Year Project II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Completion of Bachelor of Science Degree in Chemical Engineering: Total Credits: 138</td>
<td></td>
</tr>
</tbody>
</table>
Petroleum Engineering Minor

The CHE program offers a minor in Petroleum Engineering (PTE). Petroleum engineers continue to contribute to the success of a chain of operations that are aimed at supplying energy to an increasingly demanding world. To earn a minor in PTE, students must complete 15 credits of course and lab work during their third and fourth year of study. The 15 credits courses selected from the following list:

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETE 201</td>
<td>Introduction to Petroleum Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PETE 210</td>
<td>Petroleum Production Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PETE 220</td>
<td>Drilling Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PETE 230</td>
<td>Reservoir Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PETE 240</td>
<td>Well Logging</td>
<td>3</td>
</tr>
<tr>
<td>PETE 250</td>
<td>Economic Appraisal of Chemical and Petroleum Projects</td>
<td>3</td>
</tr>
</tbody>
</table>

Other courses will be added subject to instructors’ availability.

CHE students can make use of the technical elective courses offered in the third and fourth year to complete the requirements of the PTE minor.

Technical Electives

The list of technical electives for students majoring in Chemical Engineering to choose from is given below.

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE450</td>
<td>Materials Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHEE460</td>
<td>Computational Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHEE475</td>
<td>Chemical Reactor Design</td>
<td>3</td>
</tr>
<tr>
<td>CHEE480</td>
<td>Biochemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHEE485</td>
<td>Fuel Cell Technology</td>
<td>3</td>
</tr>
<tr>
<td>CHEE487</td>
<td>Polymer Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHEE488</td>
<td>Instrumentation and Process Control</td>
<td>3</td>
</tr>
<tr>
<td>CHEE489</td>
<td>Pharmaceutical Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>CHEE 490</td>
<td>Renewable Energy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Up to two courses from the Petroleum Minor list</td>
<td>6</td>
</tr>
</tbody>
</table>
Laboratory Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 311L</td>
<td>Reactive Process Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEE 411L</td>
<td>Separation Processes Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEE 441L</td>
<td>Biotechnology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEE 421L</td>
<td>Chemical Engineering Process Design Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEE 476L</td>
<td>Chemical Reactor Design Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEE 486L</td>
<td>Fuel Cell Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEE 487L</td>
<td>Polymer Engineering Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

Outlines of these and other required courses are listed in the next section.

Course Descriptions

CHEM 250L Organic Chemistry Laboratory (1 cr)
The laboratory covers experiments that include, the synthesis, separation, purification, and characterization of organic compounds, characterization techniques (IR and UV visible absorbance, NMR, mass spectrometry, and chemical tests), unknown compounds and mixtures of unknown compounds will be separated and identified by chemical and spectroscopic techniques. Co-requisite: CHEM 250.

CHEM 260 Analytical Chemistry (3 cr)
This course covers the fundamentals and techniques of analytical chemistry including solution equilibria, titrations, spectroscopic fundamentals and techniques, electrochemical fundamentals and techniques, and statistical analysis. Prerequisite: CHEM 170.

CHEM 370 Physical Chemistry (3 cr)
The course covers surface phenomena (surface tension, adsorption, electrical double layers, colloids), transport properties (thermal conductivity, viscosity, diffusion coefficients, and porous media), chemical kinetics (rate laws, mechanisms, catalysis, reaction rates, heterogeneous reactions, photochemistry), and extraction. Prerequisites: CHEM 170, MATH 205.

CHEE 201 Principles of Chemical Engineering (3 crs)
The course covers the fundamentals of chemical engineering including balancing, introduction to the design of industrial processes, survey of unit operations, systems of units, first and second laws of thermodynamics, flow processes, heat engines, relationships between thermodynamic properties, and property estimation techniques. Prerequisite: CHEM 170.
CHEE 208 Instrumentation (3 crs)
The course covers the instrumentation of different chemical analysis techniques including: Chromatography (HPLC, GC, and TLC), UV-Visible spectroscopy, IR- and FTIR spectroscopy, X-ray spectrometry, and Atomic Absorption Fluorescence spectroscopy. Prerequisite: CHEM 170.

CHEE 270 Fluid Mechanics (3 crs)
The course covers the concepts of density, volume, mass, weight, viscosity, gravitational force, fluid statics, buoyancy, balance equation, first law of thermodynamics, Bernoulli’s equation, fluid friction and momentum balance. Prerequisites: MATH 205, CHEM 170.

The course covers the basic concepts of thermodynamics, the three laws of thermodynamics, system and control volume analysis of thermodynamic processes, irreversibility, relations for ideal gas mixtures, Carnot Cycle, and the thermodynamic properties of chemical reactions (ΔU, ΔH, ΔS, ΔG, ΔA). Prerequisites: ENGR 100, MATH 200, CHEM 170.

CHEE 280 Mass Transfer (3 crs)
The course covers an introduction to mass transfer phenomena as relevant to the chemical and process industry, theories of mass transfer, the flux laws for mass transfer, diffusion of the gases, diffusion in liquid and solid, mass transfer coefficient, dimensional analysis, convective mass transfer, multi direction diffusion, and design principles for mass transfer equipment. Prerequisites: CHEE 201, MATH 205.

CHEE 299 Practical Training for Diploma Students (0 cr)
Supervised project/internship aimed at providing practical experience for Chemical Engineering diploma students. Prerequisite: Permission of the Instructor.

CHEE 300 Computational Methods (3 crs)
The course covers the numerical solutions including: root finding, numerical differentiation and integration, series expansions and approximation, finite difference methods, solution of first-order ordinary differential equations, nonlinear systems. The students will learn the basics of structural programming and numerical analysis techniques. MATLAB will be used as a basic tool together with a dedicated CAD. Prerequisites: MATH 335, CHEE 201.

CHEE 310 Reactive Process Engineering (3 crs)
This course covers principles of kinetics, analysis of both homogeneous and heterogeneous systems, reactor design, mass and energy balances for homogenous ideal reactors, batch, semi-batch, continuous stirred tank reactor, and plug flow reactor, minimization of by-product and pollution production, thermal effects on reactions. Prerequisites: CHEM 250, CHEE 201, CHEE 275.
CHEE 380 Heat Transfer (3 crs)

CHEE 400 Approved Experience (0 cr)
This course requires eight weeks of practical training in chemical engineering with an established firm.

CHEE 401 Final Year Project I (0 cr)
A supervised project, normally in groups of three students, aimed at providing practical experience in some aspects of chemical engineering. Students are expected to complete a literature survey, project specification, critical analysis, and to acquire the necessary material needed for their intended end product. Annually.

CHEE 402 Final Year Project II (3 crs)
The course teaches students the skill to integrate the knowledge gained in different courses, by asking them to deliver a product that has passed through the design, analysis, testing and evaluation stages. It includes production of a professional report, design process and outcome, implementation and testing, verification and validation, and critical appraisal of the project. Prerequisite: CHEE 401. Annually.

CHEE 410 Separation Processes (3 crs)
The course covers basic concepts of separation processes, equilibrium-based processes with staging and continuous contacting, distillation, evaporation, liquid-liquid extraction, leaching, membrane based separations. Prerequisites: CHEE 208, CHEM 370, and co-requisite: CHEE 380.

CHEE 420 Chemical Engineering Process Design (3 crs)
The course covers design of equipment, processes and systems of interest in chemical engineering through application of scientific, technological, economic principles. Emphasis is placed on problem formulation and the conceptual, analytical, and decision aspects of open-ended design situations. The work integrates knowledge and skills gained in previous and concurrent courses. Prerequisite: CHEE 310, CHEE 410, CHEE 470.

CHEE 430 Materials Science (3 crs)
The course covers structure/property relationship for metals, ceramics, polymers and composite materials, atomic and molecular structure, bonds, electronic band structure and semi-conductors, order in solids, crystal structure, disorders, solid phases, mechanical properties and fracture, physico-chemical properties, and design. Prerequisite: CHEM 370.
CHEE 440 Introduction to Biotechnology (3 crs)
The course covers introduction to biochemistry, enzyme kinetics, proteins, carbohydrates, other biochemicals, industrially significant microbes, introduction to genetic engineering, cell structure and metabolism.
Prerequisites: CHEM 250, CHEE 310.

CHEE 470 Chemical Process Dynamics and Control (3 crs)
The course covers introduction to modeling, control of dynamic chemical processes, the development of first-principles models, linearization and state space form, input-output (transfer function) form, design and tuning of PID controllers, model-based control, frequency response for robustness analysis, case studies in multivariable control, numerical analysis and simulation.
Prerequisites: CHEE 310, CHEE 410.

Major Electives

CHEE 450 Materials Engineering (3 crs)
The course covers processes for forming and producing engineering materials such as amorphous, semi-crystalline, textured and crystal-oriented substances and composites, effect of processing variables on the properties of the finished article, process of blending and alloying, shaping and joining operations, vessel equipment design for chemical engineering applications.
Prerequisite: CHEE 430.

CHEE 460 Computational Engineering (3 crs)
The course covers Monte Carlo integration; data analysis: plotting and interpretation of data, extraction of physical parameters; probability and statistics: simulation of distributions, histograms, calculation of moments, random walk problem; error analysis: sources of error, propagation of error; logistic map, and chaos.
Prerequisite: CHEE 300.

CHEE 475 Chemical Reactor Design (3 crs)
The course covers principles of kinetics, reactor design, analysis for both homogeneous and heterogeneous (catalytic) systems, the design for multiple reaction networks (optimum selectivity), analysis of simple reactor combinations, the design of isothermal, adiabatic, and optimum temperature profile reactor.
Prerequisites: CHEE 300, CHEE 310, CHEE 320.

CHEE 480 Biochemical Engineering (3 crs)
The course covers engineering aspects of microbial processes, conversions with immobilized enzymes, mixed-culture processes, sterilization, aseptic techniques, mass transfer, bioprocess control, product isolation, enzyme technology, bioprocess development. There are heavy emphases on continuous fermentation and on chemicals from biomass.
Prerequisite: CHEE 440.
CHEE 485 Fuel Cell Technology (3 crs)
The course covers the basics of fuel cell, various types of fuel cells; cell
equilibrium, standard potentials, Nernst equation, transport and adsorption in
proton-exchange membranes and supported liquid electrolytes, kinetics and
catalysis, the Butler-Volmer equation, reaction routes, mechanisms;
applications of fuel cells. **Prerequisite: CHEE 275.**

CHEE 487 Polymer Engineering (3 crs)
The course covers polymer processing operations with emphasis on the
application of polymer rheology and transport phenomena to predict
performance, polymer rheology and constitutive equations, mixing, extrusion,
injection molding, coating flows, fiber spinning, film blowing, blow molding,
compression molding, thermoforming and composites processing. **Prerequisite: CHEM 250.**

CHEE 488 Instrumentation and Process Control (3 crs)
The course covers principles of control theory and their application to chemical
processes, single-loop feedback and feed forward control; laboratory sessions
cover measurement fundamentals, signal transmission, dynamic testing, control
system synthesis, implementation and adjustment. **Prerequisite: CHEE 470.**

CHEE 489 Pharmaceutical Biotechnology (3 crs)
The course covers introduction to biotechnology, pharmaceuticals, therapeutic
products derived from living organisms (e.g., proteins, peptides, DNA, RNA) and
from the production plant, the challenges of keeping these products "active" as
they are stored, shipped, and administered to patients. **Prerequisite: CHEE 440.**

CHEE 490 Renewable Energy (3 crs)
The course covers energy conversion, utilization and storage for renewable
technologies such as wind, solar, biomass, fuel cells and hybrid systems, energy
supply from renewable resources as a result of solar power (such as direct solar
radiation, and indirect forms such as bioenergy, water and wind power),
geothermal energy, and modern technologies used in renewable energy.
Prerequisite: CHEE 275.

Laboratories

CHEE 311L Reactive Process Engineering Laboratory (1 cr)
The laboratory covers exercises in the design, operation and implementation of
various types of simple chemical reactors. **Co-requisite: CHEE 310.**

CHEE 411L Separation Processes Laboratory (1 cr)
The laboratory covers exercises in techniques and instrumentation in
separation processes. **Co-requisite: CHEE 410.**

CHEE 441L Biotechnology Laboratory (1 cr)
The laboratory covers exercises in techniques and instrumentation in
biotechnology. **Co-requisite: CHEE 440.**
CHEE 421L Chemical Engineering Process Design Laboratory (1 cr)
The laboratory covers exercises in chemical engineering process design.
Co-requisite: CHEE 420.

CHEE 476L Chemical Reactor Design Laboratory (1 cr)
The laboratory covers exercises in advanced chemical reactor design.
Co-requisite: CHEE 475.

CHEE 486L Fuel Cell Laboratory (1 cr)
The laboratory covers modern techniques for the design and assessment of fuel cells, and the deployment in hybrid electric systems. Co-requisite: CHEE 485.

CHEE 487L Polymer Engineering Laboratory (1 cr)
The laboratory covers experimental techniques to measure rheological and physical properties of various polymers. Co-requisite: CHEE 487.

Petroleum Engineering

PETE 201 Introduction to Petroleum Engineering (3 crs)
The course covers an overview of the petroleum industry, petroleum engineering (including nature of oil and gas reservoirs), petroleum exploration and drilling, formation evaluation, completion and production, surface facilities, reservoir mechanics, and improved oil recovery. Prerequisites: Approval of department head.

PETE 210 Petroleum Production Engineering (3 crs)
The course covers components of the petroleum systems, well system, production from, gas reservoirs, pseudo critical properties of natural gases, gas well deliverability for non-Darcy flow, the Near-Wellbore condition and damage characterization, effect of perforating conditions on well performance, artificial lift systems, and horizontal well production, system analysis, production chemistry basics.

PETE 220 Drilling Engineering (3 crs)
The course covers multidisciplinary aspects of overall drilling projects, equipment and accessories, various drilling techniques, analytical methods of drilling operations, demonstration of some simple design problems, the circulating system, the rotary system, bottom hole assembly, the well monitoring system, the well control system, drilling fluids, cementing, casing design, directional and multilateral drilling, offshore drilling and advanced drilling tools.

PETE 221L Drilling Mud Laboratory (1 cr)
The course covers experiments that include the topics composition, measurement, and design of the properties of drilling fluids. Co-requisite: PETE 220.
PETE 230 Reservoir Engineering (3 crs)
The course covers classifications and drive mechanisms of hydrocarbon reservoirs, basic methods for estimating the reserves, application of rock and fluid properties and geology, derivation and modification of generalized Material Balance Equation for reservoirs of various drive mechanisms and water influx theory and models.

PETE 231L Reservoir Engineering Laboratory (1 cr)
The laboratory covers laboratory measurement of reservoir fluid/rock properties, PVT, and core analysis, computer, data analyses using statistical techniques including probability concepts, regression, and optimization. Co-requisite: PETE 230.

PETE 240 Well Logging (3 crs)
The course covers analysis of well logs to determine properties of reservoir rocks, fluid saturations, lithology, and production logging. Prerequisite: 3rd or 4th year or consent of instructor.

PETE 241L Well Design Lab (1 cr)
The laboratory covers the composition, testing, and design of cement slurries and fracturing fluids.

PETE 250 Economic Appraisal of Chemical and Petroleum Projects (3 crs)
The course covers consideration of the economic factors important in the development of the chemical or petroleum enterprise, applications of economic evaluation methods to engineering project development and consideration of risk and uncertainty in project development.

PETE 251L Evaluation of Reservoir Lab (1 cr)
The laboratory covers properties from log, core and pressure transient data, interpretation of open-hole well logs and pressure drawdown and buildup tests, analysis of log and well test examples, preparation of subsurface maps.

PETE 320 Gas Engineering (3 crs)
The course covers review of properties of natural gases and condensate systems, gas flow in porous media, gas reservoir engineering, gas field development, gas condensate reservoirs, natural gas transportation and storage.

PETE 330 Petroleum Recovery (3 crs)
The course covers principles of recovery of oil and gas fields including: polymer, surfactants, miscible recovery processes, inert gas injection, emulsions, steam, in situ and wet combustion techniques laboratory.
DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Personnel

Department Chairperson: Abu Abdo, Ahmad
Assistant Professor: Abu Abdo, Ahmad

Mission

The mission of the undergraduate program in Civil Engineering is to present a high standard of education, which prepares graduating students to provide quality professional services, contribute to the state of the knowledge and practice in civil engineering, and exposes them to a global perspective and an awareness of their leadership role in regional development.

Objectives

The program offers an American-style education of the highest standards compatible with the guidelines of the US Accrediting Board for Engineering and Technology (ABET), and the Omani Authority for Academic Accreditation (OAAA). The objectives are to:

1. Provide students with a broad purposeful education targeting fundamental principles and concepts of civil engineering.
2. Endow students with the technical skills required to forge successful careers in the various civil engineering disciplines.
3. Develop and distribute, across the curriculum, open-ended activities that stimulate students’ creativity.
4. Commit to continually improve the curriculum to induce the latest and best practices in civil engineering education while conforming to the established standards of the Accrediting Board for Engineering and Technology (ABET) and the Omani Authority for Academic Accreditation.
5. Affix high priority to continually improve the learning conditions for students to attain the mathematical, scientific, computational, technical, and experimental skills required to formulate and solve multidisciplinary, complex, contemporary, and socially relevant civil engineering problems.
6. Inspire students to embrace the principles of life-long learning and endow them with the credentials that enable them to pursue higher education in reputable institutions.
7. Engage students in activities that harness their social skills so that they can comfortably work in multidisciplinary teams, effectively communicate their ideas and positions, and successfully assume leadership roles in the arena of their professional life.
8. Strengthen students’ understanding of social, economic, professional, ethical, and environmental issues in an interconnected world.
Learning Outcomes

Graduates of the Bachelor of Science degree in CVE program will possess each of the following characteristics and abilities listed below, which constitute the program learning outcomes, and which are in conformity with the program objectives. These learning outcomes coincide with the desired outcomes specified under Criterion 3 by the ABET:

a) An ability to apply knowledge of mathematics, science, and engineering.
b) An ability to identify, formulate and solve engineering problems.
c) An ability to design and conduct experiments, as well as to analyze and interpret data.
d) An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
e) An ability to use the techniques, skills, and modern tools necessary for engineering practice.
f) The broad education necessary to understand the impact of engineering solutions in a local and global, economic, environmental, and societal context.
g) An ability to function in multidisciplinary teams.
h) An ability to communicate effectively.
i) An understanding of professional and ethical responsibility.
j) Knowledge of contemporary issues.
k) Recognition of the need for, and an ability to engage in life-long learning.

The teaching and learning strategies adopted by individual instructors and students will have to target the satisfaction of the above listed program outcomes, which are in line with the program objectives.

Degrees Offered

The CVE Department offers the following degrees:

- Diploma in Civil Engineering
- Bachelor of Science in Civil Engineering

Career Opportunities

Civil Engineering graduates will find various opportunities for employment either in the private sector or in governmental agencies. Fields that are available to the civil engineer include consulting, contracting, management, construction, and environmental agencies. The civil engineer can work as an employee, partner, or owner in contracting firms, construction management, and consultant offices and in local or regional consulting design offices in departments, such as Surveying, Transportation and Planning, Structures, Geotechnical Engineering, Environmental Engineering, and Water Resources.
Program Overview

The Civil Engineering curriculum is designed to comply with the requirements of ABET accreditation. It includes at least 30 credits in basic sciences and mathematics, at least 62 credits engineering sciences and engineering design and communications skills, and at least 12 credits of humanities and social sciences excluding language and technical writing courses. Lab hands-on experience and emphasis on design are important elements that are integrated throughout the curriculum.

The curriculum is designed to grant students a Bachelor of Science degree upon the successful completion of the four-year program. The first common year with other engineering majors allows students to switch between the engineering majors at the start of the second year of their study. The university, college, and program requirements for the bachelor degree in civil engineering are listed in the College introductory pages.

Study Plan

<table>
<thead>
<tr>
<th>Year I</th>
<th>16 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1 (Fall)</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
</tr>
<tr>
<td>MATH 199</td>
<td>Calculus I</td>
</tr>
<tr>
<td>PHYS 170</td>
<td>Fundamentals of Physics I</td>
</tr>
<tr>
<td>PHYS 170L</td>
<td>Introductory Physics Laboratory</td>
</tr>
<tr>
<td>ENGR 100</td>
<td>Introduction to Engineering</td>
</tr>
<tr>
<td>ENGR 110</td>
<td>Engineering Workshop</td>
</tr>
<tr>
<td>ENGR 105</td>
<td>Engineering Graphics</td>
</tr>
<tr>
<td>Semester 2 (Spring)</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
</tr>
<tr>
<td>MATH 200</td>
<td>Calculus II</td>
</tr>
<tr>
<td>CMPS 100B</td>
<td>Introduction to Technical Programming</td>
</tr>
<tr>
<td>CHEM 130</td>
<td>Chemical Principles</td>
</tr>
<tr>
<td>CHEM 130L</td>
<td>Chemistry Laboratory</td>
</tr>
<tr>
<td>CIVE 210</td>
<td>Statics</td>
</tr>
<tr>
<td>Semester 3 (Summer)</td>
<td>9 Credits</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
</tr>
<tr>
<td>MATH 205</td>
<td>Calculus III</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
</tr>
<tr>
<td>Semester 4 (Fall)</td>
<td>17 Credits</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>MECH 270</td>
<td>Properties of Materials</td>
</tr>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
</tr>
<tr>
<td>PHYS 210</td>
<td>Fundamentals of Physics II</td>
</tr>
<tr>
<td>PHYS 210L</td>
<td>Physics Laboratory II</td>
</tr>
<tr>
<td>CIVE 265</td>
<td>Surveying & GPS</td>
</tr>
<tr>
<td>CIVE 265L</td>
<td>Surveying & GPS Laboratory</td>
</tr>
<tr>
<td>CIVE 213</td>
<td>Strength of Materials</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5 (Spring)</th>
<th>17 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>EECE 210</td>
<td>Electric Circuits</td>
</tr>
<tr>
<td>CIVE 230</td>
<td>Geotechnical Engineering</td>
</tr>
<tr>
<td>CIVE 230L</td>
<td>Geotechnical Engineering Laboratory</td>
</tr>
<tr>
<td>CIVE 221</td>
<td>Construction Materials</td>
</tr>
<tr>
<td>CIVE 221L</td>
<td>Construction Materials Laboratory</td>
</tr>
<tr>
<td>CIVE 250</td>
<td>Structural Analysis I</td>
</tr>
<tr>
<td>CIVE 241</td>
<td>Fluid Mechanics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6 (Summer)</th>
<th>0 Credits for Diploma and 3 Credits for B.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>CIVE 299</td>
<td>Practical training for Diploma Students (8 weeks)</td>
</tr>
</tbody>
</table>

Completion of the Diploma Program in CVE: Total Credits 75

<table>
<thead>
<tr>
<th>Year III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 7 (Fall)</td>
</tr>
<tr>
<td>Code</td>
</tr>
<tr>
<td>MATH 335</td>
</tr>
<tr>
<td>CIVE 325</td>
</tr>
<tr>
<td>EECE 130</td>
</tr>
<tr>
<td>CIVE 340</td>
</tr>
<tr>
<td>CIVE 241L</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8 (Spring)</th>
<th>17 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>ENGR 300</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>CIVE 361</td>
<td>Transportation Engineering</td>
</tr>
<tr>
<td>CIVE 361L</td>
<td>Transportation Engineering Laboratory</td>
</tr>
<tr>
<td>CIVE 451</td>
<td>Water and Wastewater Treatment</td>
</tr>
<tr>
<td>CIVE 451L</td>
<td>Water and Wastewater Treatment Laboratory</td>
</tr>
<tr>
<td>CIVE 420</td>
<td>Concrete II</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
</tr>
</tbody>
</table>
Year IV

Semester 9 (Summer) 0 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 400</td>
<td>Practical Training</td>
<td>0</td>
</tr>
</tbody>
</table>

Semester 10 (Fall) 15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 401</td>
<td>Final Year Project I</td>
<td>0</td>
</tr>
<tr>
<td>CIVE 331</td>
<td>Steel Design</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 350</td>
<td>Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 280</td>
<td>Business English</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 480</td>
<td>Construction Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 11 (Spring) 12 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 402</td>
<td>Final Year Project II</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilizations II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Completion of the BS Program in CVE: Total Credits 138

Note: Major elective courses can be selected in any of the areas of civil engineering, including structural, geotechnical, transportation or environmental and water resources engineering.

Course Descriptions

Core Courses

CIVE 210 Mechanical Statics (3 crs)
This course covers the following topics: force vector, 2-D system of vectors, moment, couple, resultants, static equilibrium of 2-D forces and moments, centroid, truss, friction. Prerequisite: ENGR 100, PHYS 170, Pre/Co-requisite MATH 199.

CIVE 213 Strength of Materials (3 crs)
This course covers the different types of stress and strain induced by different types of loading: axial loading, torsion, pure bending: shear force and bending moment diagrams; stress concentration; analysis and design of beams in bending; shearing stresses in beams and thin-walled members; deflection of beams. Prerequisite: CIVE 210.

CIVE 221 Construction Materials (3 crs)
This course covers the composition and properties of engineering construction materials through hands-on laboratory experiments. The course introduces students to developments in construction equipment and technologies and includes field demonstrations. Prerequisite: CIVE 213
CIVE 221L Construction Materials Laboratory (1 crs)
The Construction Materials Laboratory is established to train students to carry out tests on common construction materials such as concrete, steel, wood, and masonry. The tests are conducted to determine the engineering properties in terms of strength, strain, fatigue, creep, elasticity, stiffness durability, and workability. Co-requisite: CIVE 221

CIVE 230 Geotechnical Engineering (3 crs)
A course on engineering geology, soil classification and index properties; soil structure and moisture; compaction; seepage; effective stress concept; compressibility and consolidation; stress and settlement analysis; shear strength. Laboratory tests are conducted to familiarize students with soil characterization and the engineering behavior of soils. Co-requisite: CIVE 213

CIVE 230L Geotechnical Engineering Laboratory (1 crs)
The lab is meant to consolidate the course CIVE 230. Experiments will include: water content, organic content, specific gravity, grain size analysis, hydraulic conductivity (permeability), consolidation, direct shear, unconfined compression, triaxial shear. Co-requisite: CIVE 230.

CIVE 241 Fluid Mechanics (3 crs)
This course covers the basic concepts of fluid mechanics: properties of fluids, pressure and fluid statics, hydrostatic forces, fluid kinematics, conservation of mass, conservation of energy, fluids in rigid body translational and rotational motions, Bernoulli’s equation, momentum analysis of flow systems. Prerequisite: CIVE 210 and MATH 200.

CIVE 241L Fluid Mechanics Laboratory (1 crs)
This laboratory covers different experiments that may include: measurement of flow rate, Bernoulli’s theorem, centre of pressure, floatation characteristics, centrifugal pumps, cavitations in centrifugal pumps, characteristics of two pumps in series, pipe friction losses, friction in bends and fittings, momentum of flow, Pelton turbine, hydraulic Ram Pump, free and forced vortices. Co-requisite: CIVE 241.

CIVE 250 Structural Analysis I (3 crs)
This is an introductory course covering influence lines; deflection of beams and frames by double integration method, moment-area theorems, and conjugate beam; introduction to indeterminate structures; approximate analysis of building frames. Prerequisite: CIVE 210.

CIVE 265 Surveying & GPS (3 crs)
This course deals with the theory of measurements and errors; linear measurements; surveying instruments; leveling; angles, bearings, and azimuths; stadia measurements; traversing–field aspects; traverse computations and adjustment; topographic surveying; triangulation. Prerequisite: MATH 200
CIVE 265L Surveying & GPS Laboratory (1 cr)
In the Surveying Laboratory, students learn how to conduct distance measurements, transits and theodolites, vertical control, directions, angular measurement, topographic surveys, area and volume of earthworks, curve setting out, planimetric adjustment, GPS observable; basic principles of GPS operations; GPS error analysis; field procedures; data collection, processing; applications. Co-requisite: CIVE 265.

CIVE 299 Practical Training (Diploma students) (0 cr)
An 8-weeks professional training course in civil engineering.

CIVE 325 Concrete I (3 crs)
This course covers the mechanical properties of concrete materials; ultimate strength theory of flexure and shear; flexural and shear design of beams; service load behavior; bond properties of reinforcing bars; design of solid and ribbed one-way slabs. Prerequisite: CIVE 250 and CIVE 221.

CIVE 331 Steel Design (3 crs)
This is an introductory course to design steel structures using the LRFD method. Topics covered include tension members; compression members; beam design; serviceability requirements; beam-column design; bolted and welded connections. Prerequisite: CIVE 250 and CIVE 221.

CIVE 340 Engineering Hydrology (3 crs)
This course focuses on hydrologic principles, rainfall-runoff analysis, flood routing, frequency analysis, and ground water hydrology. Prerequisite: CIVE 241

CIVE 350 Environmental Engineering (3 crs)
This course introduces the fundamentals of environmental engineering. A screening course of major topics in environmental engineering including water and wastewater, environmental hydrology, environmental hydraulics and pneumatics, air, solid waste, noise, environmental modeling, and hazardous waste. Prerequisite: CIVE 340

CIVE 361 Transportation Engineering (3 crs)
This course introduces the field of transportation engineering through a presentation of the basics of traffic engineering, traffic flow theory, and pavement design. Prerequisite: CIVE 265.

CIVE 361L Transportation Engineering Laboratory (1 cr)
This laboratory will be used to collect and analyze data needed for the study and development of different types of transportation systems used on streets to major freeways. Experiments will include traffic counting and analysis, asphalt content of hot-mix asphalt by ignition method, Marshall Test, traffic impact studies, etc. Co-requisite: CIVE 361.
CIVE 400 Practical Training (BS students) (0 cr)
This is an 8 week practical training course in civil engineering.

CIVE 401 Final Year Project I (0 cr)
A chosen design topic and preparation of a detailed execution program for CIVE 402, through comprehensive research with the guidance and approval of the faculty. Fourth Year Level.

CIVE 402 Final Year Project II (3 crs)
A supervised project in groups of normally three students aimed at providing practical design experience in a civil and environmental engineering application. Prerequisite: CIVE 401.

CIVE 420 Concrete II (3 crs)
A course that builds upon Concrete I and covers continuous beams; short columns, slender columns, and biaxially bent columns; wall footings, concentrically and eccentrically loaded single column footings, and combined footings; staircases; bearing walls; shear walls; two-way slabs. Prerequisite: CIVE 325.

CIVE 451 Water and Wastewater Treatment (3 crs)
This course examines the quality and treatment methods of water and wastewater; testing for physical, chemical, and biological parameters. Prerequisite: CHEM 130 and CIVE 241.

CIVE 451L Water and Wastewater Treatment Laboratory (1 cr)
This laboratory will cover experiments related to the following topics: water supply and wastewater collection systems. Water transmission mains, water distribution systems, pumping, storm sewers, and sanitary sewer systems, wastewater collection and wastewater treatment. Co-requisite: CIVE 450.

CIVE 480 Construction Management (3 crs)
A course on organizing construction projects; pre-construction activities; bidding and contracts; fundamentals of construction planning, monitoring, and control; application of construction control tools: CPM, materials management, operations analysis, and quality control. Prerequisite: CIVE 221 and CIVE 325.

Technical Elective Courses

General

CIVE 485 Specifications and Cost Estimation (3 crs)
This course deals with the structure of construction documents and their interrelationships; bidding requirements; general and particular contract conditions; administrative and procedural requirements for construction; technical specifications; construction cost estimations process; unit rates determination. Prerequisite: CIVE 221 and CIVE 325.
CIVE 570 Introduction to Geographic Information Systems (3 crs)
This is an introductory course on Geographic Information Systems (GIS) and their applications in the planning and engineering fields, alternatives in computer-based graphics, date concepts and tools, network data management and planning applications, and implementation issues. Prerequisite: CIVE 265.

Structural Area

CIVE 410 Structural Analysis II (3 crs)
This course covers stability and determinacy of structures; energy theorems and applications to trusses, beams, and frames; solution of statically indeterminate structures by flexibility (force) and stiffness methods; introduction to the direct stiffness method; influence lines for indeterminate structures. Prerequisite: CIVE 250.

CIVE 510 Bridges (3 crs)
This course discusses the types of bridges; influence lines; loads and their distribution on bridges; serviceability of bridges; methods of design of bridge deck, superstructure, and substructure. Prerequisites: CIVE 410, CIVE 420, and CIVE 331.

CIVE 511 Advanced Structural Analysis (3 crs)
This course offers a review of matrix algebra; basic principles of structural analysis: stiffness, flexibility, and energy methods; direct stiffness method for plane and space trusses and frames; linear and nonlinear problems; special problems; computer programming. Prerequisite: CIVE 410.

CIVE 520 Plain Concrete (3 crs)
This course examines Portland cements; aggregates; fly ash and silica fume; admixtures for concrete; proportioning normal concrete mixtures; pumping concrete; consolidating, finishing, and curing concrete; durability; testing hardened concrete; high-strength concrete; light and heavy weight concretes; hot and cold weather concreting. Prerequisites: CIVE 221.

CIVE 522 Pre-stressed Concrete (3 crs)
This course covers material characteristics; pre-stress losses; working strength design procedures; composite construction; ultimate flexural strength and behavior; shear design; continuous pre-stressed concrete members. Prerequisite: CIVE 420.

Geotechnical Area

CIVE 430 Foundation Engineering (3 crs)
A course that covers site investigations; evaluation of data from field and laboratory tests; estimation of stresses in soil masses; applications of principles of soil mechanics to determination of bearing capacity and settlement of spread footings, mats, single piles, and pile groups. Prerequisite: CIVE 230.
CIVE 530 Applied Foundation Engineering
(3 crs)
A course on braced excavations, retaining structures, deep foundations, slope stability, and computer applications.
Prerequisite: CIVE 430.

CIVE 532 Soil and Site Improvement
(3 crs)
This course covers compaction, admixture stabilization, foundation soil treatment, reinforced soil and composite materials, and material sites reclamation.
Prerequisite:
advanced standing level. CIVE 230.

Transportation Area

CIVE 460 Highway Engineering
(3 crs)
A course that examines road vehicle performance; principles of geometric design and highways; horizontal and vertical alignment; earthwork; intersections and interchanges; parking facilities; basic traffic models; queuing theory and traffic analysis; travel demand forecasting.
Prerequisite: CIVE 361.

CIVE 560 Pavement Design
(3 crs)
A course examining highway and airport pavement design; flexible and rigid pavement types and wheel loads; stresses in flexible and rigid pavements; pavement behavior under moving loads; soil stabilization.
Prerequisite: CIVE 361.

CIVE 561 Urban Transportation Planning I
(3 crs)
This introductory course covers methods and models used in transportation planning with emphasis on the urban context.
Prerequisite: CIVE 361.

CIVE 562 Traffic Engineering
(3 crs)
This course outlines traffic engineering studies; traffic control of signalized and un-signalized intersections; signal control hardware and maintenance; arterial performance and operations; network optimization.
Prerequisite: CIVE 361.

Water Resources Area

CIVE 440 Hydraulics + Laboratory
(3 crs)
This lab deals with flow in conduits, flow in open channels, flow measurements, and laboratory experiments.
Prerequisite: CIVE 241 and CIVE 241L.

CIVE 540 Hydraulic Structures
(3 crs)
This course covers closed conduit flow, water distribution systems, transient analysis, open channel flow, flood control, culvert hydraulics, design of various hydraulic structures.
Prerequisite: CIVE 440.

CIVE 541 Surface Water Hydrology
(3 crs)
This course covers design storm, rainfall-runoff modeling, overland flow, flood routing, reservoir routing, simulation models, hydrologic design, urban hydrology, and stochastic hydrology.
Prerequisite: CIVE 340.
CIVE 542 Groundwater Hydrology (3 crs)
A course that deals with properties of groundwater, groundwater movement, general flow equations, steady-state well hydraulics, seepage forces, unsteady well hydraulics, infiltration, and groundwater modeling. Prerequisite: CIVE 340.

Environmental Area

CIVE 550 Methods of Environmental Sampling and Analysis (3 crs)
A course on sampling techniques and instrumental methods in environmental sciences; determination of pollutants in water, air, and soil; analytical techniques; adaptation of procedures to specific matrices; case studies. Prerequisite: CIVE 350 and CIVE 450.

CIVE 553 Water and Sewage Works Design (3 crs)
A course that examines the design of water and wastewater schemes, including design reports and a literature search on the development of conventional treatment processes. Prerequisites: CIVE 350 and CIVE 450.

CIVE 554 Solid Waste Management I (3 crs)
A course on nature and effects of solid wastes including hazardous wastes; engineering management principles, practices, and techniques for management of solid wastes administration; solid waste generation, storage, collection and transport, processing, resource recovery, and disposal; trip to a local facility. Prerequisite: CIVE 350.

Laboratories

The Civil Engineering program will maintain specialized teaching and research laboratories for environmental, hydraulics, and structural engineering. The laboratories will be used for teaching and research purposes as well as to enhance teaching through hands-on experience in the various fields of civil engineering. Course projects and final year projects will make effective use of the facilities.

Structural and Materials Laboratory

Undergraduate students use the laboratory to experiment with various construction materials to satisfy the requirements of the Construction Materials Laboratory course (CIVE 221L), which consists of standardized experiments to evaluate construction materials properties covered in Construction Materials course (CIVE 221). In addition, a number of other undergraduate and graduate core and elective courses will make use of the laboratory in projects related to building structural systems and testing components. Such a facility will be used by students and faculty in their research activities and will contribute to the improvement of undergraduate and graduate education.

Soil Mechanics Laboratory

The Soil Mechanics Laboratory will contain various pieces of equipments that are necessary for performing the basic geotechnical tests and more advanced
tests such as triaxial compression tests, direct shear tests, slope stability, and soil bearing capacity experiments. Laboratory work is required from undergraduate students, as part of the Geotechnical Engineering Laboratory course (CIVE 230L), which introduces them to basic geotechnical principles and standard tests such as soil classification and other soil properties that are covered in the Geotechnical Engineering course (CIVE 230). Several foundation and soil behavior courses utilize the lab facilities for demonstrations or projects (CIVE 430 and CIVE 532).

Transportation and Surveying Facilities

The Transportation and Surveying equipments will include instruments to be used in the Surveying and GPS Laboratory course (CIVE 265L) in which laboratory work and field measurements comprise the majority of the course work. Sufficient surveying instruments will include traditional transits, theodolites, total stations, and levels. Modern instruments such as EDM and GPS units will also be available for group work and demonstration purposes. Part of the Transportation Engineering Laboratory course (CIVE 361L) will comprise a set of laboratory sessions that are oriented at carrying out field surveys related to transportation issues.

Fluid Laboratory

The Fluid Laboratory will house the basic equipment used in standard experiments, such as channels, flumes, and hydrology systems, which are normally present in hydraulic laboratories. Laboratory experiments are offered as part of the two basic undergraduate courses, Fluid Mechanics Laboratory (CIVE 241L), and Hydraulics and Laboratory (CIVE 440).

Computer Laboratories

Computer laboratories shared by various departments of the College will be made available to CIVE students for instruction and project execution. Six lab rooms are available that house a total of 80 PCs from Dell, Macintosh, Lenovo, IBM, and HP. Each lab has teaching equipment such as a whiteboard, a fixed ceiling LCD projector with a rollup projection screen and an audio system. Computers will be typically supplemented by a collection of software related to specific fields of civil engineering.
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Personnel

Department Chairperson: Mamlook, Rustom
Professor: Mamlook, Rustom
Assistant Professors: Ahamed, Imthias; Al-Azzo, Wisam; Mohammed, Thabit Sultan
Instructor: Sulthan, Sheik Mohammed
Laboratory Technician: Khan, Omer Fraz

Mission

The department of Electrical and Computer Engineering is aiming at developing students coming from high schools with scientific background, to attain the fundamental skills, knowledge, and practice in the disciplines of electrical, electronics and computer engineering. Graduates from this department will be prepared to undertake careers in service, design, operation, and control of electrical engineering systems. The department strives to create the academic environment necessary for training innovators and leaders for the future, as well as to conduct scholarly research.

Objectives

The objectives of the ECE department are to:

- To prepare graduates for successful careers in engineering by gaining skills and knowledge that qualify them for professional practice in electrical and computer engineering.
- To provide graduates with fundamental knowledge, appropriate mathematical principles and computing tools for analysis and design in the fields of electrical, electronic, and computer engineering.
- To sustain atmosphere in which graduates can conduct professional projects, including internships with industry, which help in securing employment in the industrial sector.
- To provide graduates with an educational foundation that fosters creativity, teamwork, leadership, and communication skills, and prepares them for life-long learning.

Learning Outcomes
On successful graduation from the ECE department, students should be able to:

1. Apply essential mathematical and engineering techniques for modelling and analysis of practical and hypothetical electrical and electronic engineering systems.
2. Relate basic principles of information technology to electrical and electronic engineering applications.
3. Develop solutions to practical engineering problems through analysis of data and ideas.
4. Identify the essential design principles appropriate to electrical power systems; equipments and components.
5. Develop systems or components by integrating ideas from various resources.
6. Recognise the professional and ethical responsibilities of engineers.
7. Generate high quality technical reports.

Degrees Offered

The ECE Department offers the following degrees:

- Diploma in Electrical and Computer Engineering
- BS in Computer and Communications Engineering
- BS in Electrical and Electronics Engineering
- Minor in Information Technology

Career Opportunities

Graduates from the Electrical and Computer Engineering department will find a wide range of opportunities for employment either in the private sector, governmental agencies, and non-governmental organizations (NGO’s). Fields that are available but not limited to ECE graduates include technical fields, consulting or management.

Graduates can work in the communication sector, power sector, renewable energy enterprises, oil and refineries industries, defense, aviation, media broadcasting, software development, networking and hardware, power electronics industries, marketing, and software management, and in the fields of teaching and training.

Program Overview

The ECE curricula are designed to comply with the requirements of the ABET standards. The requirements for the ECE offered programs are:

- 75 credit hours towards Diploma in ECE.
- 138 credit hours towards BS Degrees (CCE and EEE).

The curriculum is designed to grant students a Bachelor of Science degree upon the successful completion of the four-year program. The first common year
with other engineering majors allows students to switch between the engineering majors at the start of the second year of their study. The university, college, and program requirements for the bachelor degrees in the ECE majors are listed in the College introductory pages.

Study Plans

Diploma in ECE

<table>
<thead>
<tr>
<th>Year I</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1 (Fall)</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>CMPS 100B</td>
<td>Introduction to Technical Computing for the Sciences</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
</tr>
<tr>
<td>MATH 199</td>
<td>Calculus I</td>
</tr>
<tr>
<td>PHYS 170</td>
<td>Fundamentals of Physics I</td>
</tr>
<tr>
<td>PHYS 170L</td>
<td>Introductory Physics Laboratory I</td>
</tr>
<tr>
<td>ENGR 105</td>
<td>Engineering Graphics</td>
</tr>
<tr>
<td>Semester 2 (Spring)</td>
<td>17 Credits</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>EECE 130</td>
<td>Computers and Programming I</td>
</tr>
<tr>
<td>EECE 130L</td>
<td>Computers and Programming Laboratory</td>
</tr>
<tr>
<td>EECE 210</td>
<td>Electric Circuits I</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
</tr>
<tr>
<td>ENGR 100</td>
<td>Introduction to Engineering</td>
</tr>
<tr>
<td>MATH 200</td>
<td>Calculus II</td>
</tr>
<tr>
<td>ENGR 110</td>
<td>Engineering Workshop</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year II</th>
<th>9 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 3 (Summer)</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
</tr>
<tr>
<td>MATH 205</td>
<td>Calculus III</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
</tr>
<tr>
<td>Semester 4 (Fall)</td>
<td>17 Credits</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>EECE 211</td>
<td>Electric Circuits II</td>
</tr>
<tr>
<td>EECE 210L</td>
<td>Electric Circuits Laboratory I</td>
</tr>
<tr>
<td>EECE 220</td>
<td>Digital Systems Design</td>
</tr>
<tr>
<td>EECE 230</td>
<td>Computers and Programming II</td>
</tr>
<tr>
<td>MECH 272</td>
<td>Mechanical Statics</td>
</tr>
<tr>
<td>PHYS 210</td>
<td>Fundamentals of Physics II</td>
</tr>
<tr>
<td>EECE 211L</td>
<td>Electric Circuits Laboratory II</td>
</tr>
</tbody>
</table>
Bachelor of Science in CCE

Year I

Semester 1 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPS 100B</td>
<td>Introduction to Technical Computing for the Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 199</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 170</td>
<td>Fundamentals of Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 170L</td>
<td>Introductory Physics Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 105</td>
<td>Engineering Graphics</td>
<td>2</td>
</tr>
</tbody>
</table>

Semester 2 (Spring)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 130</td>
<td>Computers and Programming I</td>
<td>3</td>
</tr>
<tr>
<td>EECE 130L</td>
<td>Computers and Programming Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EECE 210</td>
<td>Electric Circuits I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 100</td>
<td>Introduction to Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MATH 200</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 110</td>
<td>Engineering Workshop</td>
<td>1</td>
</tr>
</tbody>
</table>

**Year II

Semester 3 (Summer)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 205</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
<td>3</td>
</tr>
<tr>
<td>Semester 4 (Fall)</td>
<td>17 Credits</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>EECE 211</td>
<td>Electric Circuits II</td>
<td>3</td>
</tr>
<tr>
<td>EECE 210L</td>
<td>Electric Circuits Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>EECE 220</td>
<td>Digital Systems Design</td>
<td>3</td>
</tr>
<tr>
<td>EECE 230</td>
<td>Computers and Programming II</td>
<td>3</td>
</tr>
<tr>
<td>MECH 272</td>
<td>Mechanical Statics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 210</td>
<td>Fundamentals of Physics II</td>
<td>3</td>
</tr>
<tr>
<td>EECE 211L</td>
<td>Electric Circuits Laboratory II</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5 (Spring)</th>
<th>17 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>EECE 212</td>
<td>Basic Electronics</td>
</tr>
<tr>
<td>EECE 212L</td>
<td>Basic Electronics Laboratory</td>
</tr>
<tr>
<td>EECE 220L</td>
<td>Digital Systems Laboratory</td>
</tr>
<tr>
<td>EECE 221</td>
<td>Microprocessor Systems</td>
</tr>
<tr>
<td>EECE 231</td>
<td>Data Structures and Algorithms</td>
</tr>
<tr>
<td>MATH 210</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
</tr>
</tbody>
</table>

| Year III |

<table>
<thead>
<tr>
<th>Semester 7 (Fall)</th>
<th>16 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>EECE 221L</td>
<td>Microprocessor Laboratory</td>
</tr>
<tr>
<td>EECE 330</td>
<td>Software Engineering</td>
</tr>
<tr>
<td>EECE 341</td>
<td>Electromagnetic Field Theory I</td>
</tr>
<tr>
<td>ENGL 280</td>
<td>Business English</td>
</tr>
<tr>
<td>ENGR 300</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>MATH 335</td>
<td>Mathematics for Science and Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8 (Spring)</th>
<th>16 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>EECE 320</td>
<td>Computer Organization and Architecture</td>
</tr>
<tr>
<td>EECE 340</td>
<td>Signals and Systems</td>
</tr>
<tr>
<td>EECE 344</td>
<td>Electromagnetic Field Theory II</td>
</tr>
<tr>
<td>Two EECE Major Electives</td>
<td>6</td>
</tr>
<tr>
<td>Elective Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>
Year IV

Semester 9 (Summer)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 400</td>
<td>Practical Training</td>
<td>0</td>
</tr>
</tbody>
</table>

Semester 10 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 401</td>
<td>Final Year Project I</td>
<td>0</td>
</tr>
<tr>
<td>EECE 470</td>
<td>Computer Networks</td>
<td>3</td>
</tr>
<tr>
<td>EECE 342</td>
<td>Communication Systems</td>
<td>3</td>
</tr>
<tr>
<td>EECE 342L</td>
<td>Communication Systems Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilizations II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Hum/Soc Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Science Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 11 (Spring)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 402</td>
<td>Final Year Project II</td>
<td>3</td>
</tr>
<tr>
<td>EECE 422</td>
<td>Information Theory and Coding</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Two EECE Major Electives</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>General Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Completion of the BS Program in CCE: Total Credits 138

Bachelor of Science Degree in EEE

Year I

Semester 1 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPS 100B</td>
<td>Introduction to Technical Computing for the Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 199</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 170</td>
<td>Fundamentals of Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 170L</td>
<td>Introductory Physics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 105</td>
<td>Engineering Graphics</td>
<td>2</td>
</tr>
</tbody>
</table>

Semester 2 (Spring)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 130</td>
<td>Computers and Programming I</td>
<td>3</td>
</tr>
<tr>
<td>EECE 130L</td>
<td>Computers and Programming Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EECE 210</td>
<td>Electric Circuits I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 100</td>
<td>Introduction to Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MATH 200</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 110</td>
<td>Engineering Workshop</td>
<td>1</td>
</tr>
</tbody>
</table>
Year II

Semester 3 (Summer)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 205</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 4 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 211</td>
<td>Electric Circuits II</td>
<td>3</td>
</tr>
<tr>
<td>EECE 210L</td>
<td>Electric Circuits Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>EECE 220</td>
<td>Digital Systems Design</td>
<td>3</td>
</tr>
<tr>
<td>EECE 230</td>
<td>Computers and Programming II</td>
<td>3</td>
</tr>
<tr>
<td>MECH 272</td>
<td>Mechanical Statics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 210</td>
<td>Fundamentals of Physics II</td>
<td>3</td>
</tr>
<tr>
<td>EECE 211L</td>
<td>Electric Circuits Laboratory II</td>
<td>1</td>
</tr>
</tbody>
</table>

Semester 5 (Spring)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 212</td>
<td>Basic Electronics</td>
<td>3</td>
</tr>
<tr>
<td>EECE 212L</td>
<td>Basic Electronics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EECE 220L</td>
<td>Digital Systems Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EECE 221</td>
<td>Microprocessor Systems</td>
<td>3</td>
</tr>
<tr>
<td>EECE 231</td>
<td>Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>MATH 210</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
</tr>
</tbody>
</table>

Year III

Semester 7 (Fall)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 221L</td>
<td>Microprocessor Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EECE 341</td>
<td>Electromagnetic Field Theory I</td>
<td>3</td>
</tr>
<tr>
<td>EECE 350</td>
<td>Fundamentals of Electric Power Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 280</td>
<td>Business English</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 300</td>
<td>Engineering Economy</td>
<td>3</td>
</tr>
<tr>
<td>MATH 335</td>
<td>Mathematics for Science and Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 8 (Spring)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 340</td>
<td>Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>EECE 344</td>
<td>Electromagnetic Field Theory II</td>
<td>3</td>
</tr>
<tr>
<td>EECE 320</td>
<td>Computer Organization and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>EECE 361</td>
<td>Power Systems I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Hum/Soc Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Year IV</td>
<td>Semester 9 (Summer)</td>
<td>0 Credits</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>EECE 400</td>
<td>Practical Training</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 10 (Fall)</th>
<th>16 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>EECE 401</td>
<td>Final Year Project I</td>
</tr>
<tr>
<td>EECE 342</td>
<td>Communication Systems</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilizations II</td>
</tr>
<tr>
<td></td>
<td>Two EECE Major Electives</td>
</tr>
<tr>
<td>EECE 360</td>
<td>Control Systems</td>
</tr>
<tr>
<td></td>
<td>Elective Laboratory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 11 (Spring)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>EECE 402</td>
<td>Final Year Project II</td>
</tr>
<tr>
<td></td>
<td>Two EECE Major Electives</td>
</tr>
<tr>
<td></td>
<td>General Elective</td>
</tr>
<tr>
<td></td>
<td>Science Elective</td>
</tr>
</tbody>
</table>

Completion of the BS Program in EEE: Total Credits 138

Course Descriptions

Core Courses

EECE 130 Computers and Programming I (3 crs)
This course covers the fundamental concepts of programming using C++ as a high level language, basic programming tools, input and output functions, variable declaration, mathematical and logical operations, programming control structures, program composition of functions, scope of identifiers, principles and basic operations of arrays. *Prerequisite: CMPS 100B.*

EECE 130L Computers and Programming Laboratory (1 cr)
This course covers the basic programming concepts with particular application to the solution of engineering problems using a high level programming language namely C++: fundamental concepts of C++, solving mathematical functions, control structures, functions, and arrays. *Co-requisite: EECE 130.*

EECE 210 Electric Circuits I (3 crs)
This course covers the fundamentals of DC electric circuit: quantities such as current, voltage and power; active and passive elements; laws of DC circuit analysis; analyzing simple resistive circuits using DC circuit analysis standard techniques; and introduction to AC circuits. *Prerequisite: PHYS 170.*
EECE 210L Electric Circuits Laboratory I (1 cr)
This course deals with the experiments on DC circuits using modern experiment modules, measurement and display devices. The experiments include the practical realization, simulation, testing, and analysis of electric circuits: verification of basic circuit laws, series and parallel circuits, network analysis, analysis of DC circuits using MULTISIM. Co-requisite: EECE 210.

EECE 211 Electric Circuits II (3 crs)
This course presents the principles of AC circuit analysis: phasors; representation of electric circuit elements in AC circuits; laws of AC circuit analysis; standard techniques such as the node-voltage method; three-phase AC circuits; three-phase power calculations; Laplace transform; and solving electric circuits in the s-domain. Prerequisite: EECE 210. Co-requisite PHYS 210.

EECE 211L Electric Circuits Laboratory II (3 crs)
This course deals with wide range of experiments on DC circuits and AC circuits using modern experiment modules, measurement and display devices. The experiments include the practical realization, simulation, testing, and analysis of electric circuits: series and parallel circuits, network analysis, response of R, RL and RC circuits in frequency domain and circuit analysis using MULTISIM. Co-requisite: EECE 211.

EECE 212 Basic Electronics (3 crs)
This course covers the fundamentals of basic electronics: Introduction to semiconductors, PN-junctions, Diode circuits, models and applications: rectifiers, comparators, voltage limiters, clippers, clamps and power dissipation. LEDs, Zener diode regulator, BJT and MOSFET characteristics and applications. Operational amplifiers. Prerequisite: EECE 210

EECE 212L Basic Electronics Laboratory (1 cr)
This course covers the characteristics and application of electronic devices: study of the characteristics of diodes, and BJTs, some applications of diodes such as rectifiers, voltage regulators, and characteristics as well as applications of OP-AMPS. The experiments are performed using modern experiment modules, measurement and display devices. MULTISIM is used for simulation and analysis of electronic circuits. Co-requisite: EECE 212.

EECE 220 Digital Systems Design (3 crs)
This course covers principles of digital systems design: Number systems and codes, combinational circuit analysis, synthesis and practices; minimization methods, sequential logic design principles, latches and flip-flops, synchronous circuits, state machines, and an introduction to VHDL. Prerequisite: EECE 210.
EECE 220L Digital Systems Laboratory (1 cr)
This course covers the experiments on logic gates, flip-flops, ALU, and timers: verification of logic gates and flip-flops, design of encoders and decoders, adders, comparators, code converters, counters and shift registers. Experiments are to include hardware realization and implementation using modern experiment modules, simulation of circuits using MULTISIM software. Co-requisite: EECE 220.

EECE 221 Microprocessor Systems (3 crs)
This course covers an introduction to microprocessor systems; memory types, busses, and programming model; assembly language programming; addressing modes; assemblers. Translating high-level programs to assembly language; arithmetic operations, logic operations, selection statements, looping, pointers, subroutines, macros, etc. Interfacing techniques; interfacing ICs. Prerequisite: EECE 220.

EECE 221L Microprocessor Laboratory (1 cr)
This course covers realization of engineering application using assembly language programming on microprocessor/microcontroller kits: hands-on design experience with micro-computer systems and applications including busses, interfaces, usage of ports and registers, realization of control of DC motor and stepper motor, traffic signal control and washing machine controller. Co-requisite: EECE 221.

EECE 230 Computers and Programming II (3 crs)
This course covers advanced programming concepts with particular application to the solution of engineering problems using C++ programming language: strings, pointers, structures, object-oriented programming, classes, objects, constructors, destructors, inheritance and an introduction to data structures and algorithms. Prerequisite: EECE 130.

EECE 231 Data Structures and Algorithms (3 crs)
This course covers algorithm design and programming techniques in large programs: recursion, sorting and searching algorithms, different data structures (stacks, queues, lists, trees, binary search trees) are described as abstract data types with their methods by training extensive examples and applications. Prerequisite: EECE 230.

EECE 299 Diploma Practical Training (0 crs)
This is a supervised project/internship course aimed at providing practical experience for Electrical and Computer Engineering diploma students. Prerequisite: Permission of the advisor.

EECE 320 Computer Organization and Architecture (3 crs)
This course covers and introduction to computer systems, CISC and RISC, performance of computer systems, the MIPS microprocessor architecture, ISA design principles, instruction mapping into registers, hardware floating point arithmetic, data path design, control unit design, pipelining, memory, I/O. Prerequisite: EECE 221. Annually.

264
EECE 330 Software Engineering
This course covers the fundamentals of software engineering to create practical and cost-effective solutions to software systems including: understanding system requirements, effective methods of design, coding, testing, evaluation and maintenance. Prerequisite: EECE 231. Annually.

EECE 340 Signals and Systems
This course covers the main concepts of signals and systems: definition, classification and examples of signals and systems, signals properties and operations, systems properties and interconnection; convolution theorem; Laplace transform and inverse Laplace transform of system examples; and Fourier series representation of signals. Prerequisites: EECE 210 and MATH 335. Annually.

EECE 341 Electromagnetic Field Theory I
This course covers the concepts of electrostatics and magnetostatics fields theory: vector analysis. static electric fields, Coulomb’s law, Gauss’s law and applications, capacitance, electrostatic forces, Poisson’s equation, static magnetic fields, Biot-Savart law, Ampere’s law, Faraday’s law, vector magnetic potential, inductance, and magnetic energy. Co-requisites: MATH 335, PHYS210, EECE 210L. Annually.

EECE 342 Communication Systems
This course covers baseband and passband transmission techniques includes: continuous-wave modulation; pulse modulation (PAM, PWM, PPM), PCM, differential PCM, delta modulation, baseband data transmission and digital modulation techniques, ISI, Nyquist theorem, eye pattern, signal-space analysis, ASK, FSK, PSK, DPSK and M-ary modulation. Prerequisite: EECE 340.

EECE 342L Communication Systems Laboratory
This course covers various experiments related to analog and digital communication techniques: modulation and demodulation techniques such as AM and FM, PAM, PCM, and PWM; multiplexing and de-multiplexing, ASK, PSK, and FSK, and Signal broadcasting, some MATLAB based programming and modeling are introduced. Co-requisite: EECE 342. Annually.

EECE 344 Electromagnetic Field Theory II
This course covers advances topics in electromagnetic field theory: Maxwell’s equation for time varying electromagnetic fields; Faraday’s Law; stationary loop in a time-varying magnetic field; moving conductor in a stationary magnetic field; plane wave propagation, time-harmonic fields, and propagation in lossless media; transmission lines and antennas. Prerequisite: EECE 341. Annually.
EECE 350 Fundamentals of Electric Power Engineering (3 crs)
This course comprises the fundamentals of electric power engineering: an overview of electric power network; magnetic materials, basic laws and properties such as hysteresis loop and saturation; single-phase transformer, circuit analysis, modeling, efficiency and parameters calculation using open and short-circuit tests; induction motor; and synchronous generators. Prerequisite: EECE 211. Annually.

EECE 400 Practical Training (0 crs)
This is a supervised project/internship course aimed at providing practical experience for Electrical and Computer Engineering BS students. Prerequisite: Permission of the advisor.

EECE 401 Final Year Project I (0 crs)
A supervised project, normally in groups of three students, aimed at providing practical experience in some aspects of computer, communications, and electrical engineering. Students are expected to complete a literature survey, project specification, critical analysis, and to acquire the necessary material needed for their intended end product. Annually.

EECE 402 Final Year Project II (3 crs)
A course that seeks to impart in students the skill to integrate the knowledge gained in different courses by asking them to deliver a product that has passed through the design, analysis, testing, and evaluation stages. This course includes production of a professional report, design process and outcome, implementation and testing, verification and validation, and critical appraisal of the project. Prerequisite: EECE 401. Annually.

EECE 360 Control Systems (3 crs)
This course includes the fundamentals of control systems engineering: definition, configuration and design of open loop and closed loop systems; mathematical modeling of dynamic control systems such as electric circuits; block diagrams, transfer functions; stability analysis; transient response and steady state error calculations of first and second order systems; and root locus. Prerequisite: EECE 340. Annually.

EECE 361 Power Systems I (3 crs)
This course introduces the main features of electrical power systems: configuration; modeling of transmission lines; design procedure and parameters calculation of power feeders; per-unit system calculations; introduction to symmetrical components; Prerequisite: EECE 211. Annually.

EECE 422 Information Theory and Coding (3 crs)
This course covers and introduction to information theory, entropy and mutual information; discrete memory-less sources, discrete memory-less channels and their capacity-cost functions; concepts of source coding, lossy and lossless compression techniques; concepts of channel coding and error control, linear codes, convolutional codes, and Turbo codes. Prerequisite: MATH 335. Annually.
EECE 470 Computer Networks (3 crs)
This course covers networking concepts and technologies, networking architectures and protocols, internetworking and applications, data communications; wide area networks; circuit and packet switching; routing; congestion control; local area networks. Prerequisite: MATH 335. Annually.

EECE Elective Laboratories

EECE 330L Object Oriented Technologies Laboratory (1 cr)
This course covers Object oriented technologies using Java programming language: requirements analysis and system design using UML; documentation; debugging; testing; use of software development tools; graphical user interface; concurrent programming; database connectivity; web and networking applications and web services. Prerequisite: EECE 230.

EECE 361L Power Systems Simulation Laboratory (1 cr)
This course presents the MATLAB programming environment: introduction to linear algebra and operations on matrices; MATLAB commands; m-files; and MATLAB applications such as series expansions of trigonometric functions, solving simultaneous equations, plotting graphs, and simulation of electric circuits using SIMULINK toolbox. Prerequisite: EECE 211. Annually.

EECE 370L Web Programming Laboratory (1 cr)
This course covers fundamental technologies and techniques for creating applications on the world wide web (www) from client and server sides: introduction to the internet and web, HTML, XHTML, CSS, JavaScript and PHP programming languages. Prerequisite: EECE 130.

EECE 413L Embedded System Design Laboratory (3 crs)
This course covers embedded hardware design. Main topics includes: embedded computing platforms, software design tools and technologies: CAD tools, compilers, and assemblers; hardware design tools and technologies: (VHDL and/or Verilog), high-level synthesis tools (Handel-C), ASIC and FPGA design flows; memory; interfacing; Pre– or co-requisite: EECE 413 or Permission of the Instructor.

EECE 421L Computer Interfacing Laboratory (1 cr)
This course covers realization of engineering application by interfacing hardware with C++ programming language: debug environment, using parallel ports, I/O operation, realization of control of LEDs, seven segment displays and simple motor control through parallel ports. Introduction to VHDL. Co-requisites: EECE 130, EECE 220.

EECE 422L Information Theory and Coding Laboratory (1 cr)
This course covers encoding and decoding of linear block codes; convolution codes: generator polynomial, state diagram, Trellis diagram, Viterbi decoding algorithm, turbo codes: effect of change of frame size, iterations, code rate, MAP and SOVA decoding algorithms. Co-requisite: EECE 422. Annually.
EECE 460L Control Systems Laboratory (1 cr)
This laboratory comprises the analysis of linear continuous control systems: first and second order systems; transient and steady-state system responses; and the effect of system poles and zeros location on the overall system performance and stability. Co-requisite: EECE 360.

Major Electives

EECE 410 Advanced Computer Architecture (3 crs)
This course covers evolution of advanced computer architectures; classification of parallel processing systems; a study of scalable and parallel computer architectures for achieving a proportional increase in performance with increasing system resources; cutting-edge technologies in scalable parallel computing are presented with emphasis on design aspects. Prerequisite: EECE 320. Alternate years.

EECE 411 Computer Systems Analysis (3 crs)
This course covers the development of analytical models of computer systems and application of such models to performance evaluation. Topics covered include scheduling policies, paging algorithms, multi-programmed resource management, and queuing theory. Prerequisite: EECE 320. Alternate years.

EECE 412 Computer Graphics (3 crs)
This course covers fundamentals of computer graphics: interactive graphics, vector generation and point-plotting displays, graphical input devices, windowing, clipping, viewports, zooming, geometrical transformations (2D and 3D), advanced display architecture, Raster algorithms, Raster display architecture, representation of 3D shapes and applications: CAD, menu-driven packages, and simulation. Prerequisite: EECE 320. Alternate years.

EECE 413 Embedded System Design (3 crs)
This course covers the design of embedded systems: embedded hardware design, system design process, embedded computing platforms, software design tools and technologies, CAD tools, compilers, and assemblers; hardware design tools and technologies, hardware-description languages, high-level synthesis tools, ASIC and FPGA design flows; memory; interfacing. Prerequisite: EECE 221.

EECE 414 Fault Tolerant Computing (3 crs)
This course covers the concepts and terminologies of fault-tolerant system design; reliability of series/parallel systems; redundancy management, voting, information redundancy, MTTF, M-of-N systems, reliability block diagrams, systems diagnosis; software fault tolerance, fault tolerant networks, common network topologies, fault tolerant routing. Prerequisite: EECE 220. Annually.
EECE 424 Data Communication Networks (3 crs)
This course covers data communication networks: network topology; data transmission fundamentals; error control; multi-layer network architecture and protocols; network management; network security and privacy; network performance measurements. Prerequisite: EECE 470. Alternate years.

EECE 430 Design and Applications of Information Systems (3 crs)
This course covers fundamentals of design and applications of information systems: investigating hardware and software selection criteria; case studies; application software maintenance; resource allocation; scheduling; staffing requirements; processing organizations; applications. Prerequisite: EECE 330. Annually.

EECE 432 Distributed Object-Oriented Systems (3 crs)
This course covers the subject of distributed object-oriented systems: middleware for distributed objects; dynamic object requests; distributed objects life cycle, persistence, transactions, and security. Prerequisite: EECE 330. Alternate years.

EECE 433 Database Management Systems (3 crs)
This course covers the fundamentals of data base technology: introduction to database management systems, relational DB, relational model, relational algebra, SQL query languages, DB design and the E-R model and application design and development. Prerequisite: EECE 230. Alternate years.

EECE 437 Optimizing Compilers (3 crs)
This course covers the area of optimizing compilers: characteristics of building modern optimizing compilers including intermediate representations, basic blocks and flow graphs, data flow analysis, partial evaluation and redundancy elimination, loop optimizations, register allocation, instruction scheduling, and inter-procedural analysis. Prerequisites: EECE 231 and EECE 320. Alternate years.

EECE 439 Object-Oriented Systems (3 crs)
This course covers the object oriented technology used for building software systems: languages, databases, analysis and designs, and systems: software lifecycles, layered architectures, object reusability, and multi-developer support. Prerequisite: EECE 330. Alternate years.

EECE 440 Fiber Optics (3 crs)
This course covers fiber optics: generation and propagation of light, interaction of light and matter, geometric optics, ray tracing and aberration theory, superposition of waves, coherence and interference, and Fresnel and Fraunhofer diffraction; special topics: lasers and holography. Prerequisite: EECE 341. Annually.
EECE 443 Microwave Communication Systems (3 crs)
This course covers microwave communication systems: transmission principles and media including lines, radio links, optical fibers; antennas: L.F., H.F., earth stations, and satellites; design and performance of microwave links; satellite communications; cellular networks. Prerequisite: EECE 342. Annually.

EECE 444 Environmental Impacts of Energy Systems (3 crs)
This course covers the environmental impacts of energy systems: world energy resources and classifications; sources and effects of air pollution; air quality modeling, Gaussian dispersion models; motor vehicles emissions and noise pollution, mitigation strategies; environmental impacts of electricity generation, pollution control systems, electromagnetic radiations. Prerequisite: ENGR100. Annually

EECE 450 Artificial Intelligence (3 crs)
This course covers the fundamentals of artificial intelligence: search techniques, knowledge representation, logic and theorem proving; expert systems; natural language understanding, vision; learning from experience and prolog. Prerequisite: EECE 231. Alternate years.

EECE 452 Neural Networks (3 crs)
This course covers back propagation, and adaptive neural networks; transformation by layered networks, statistical neurodynamics, associative memory and neural learning; applications to functional approximations, signal filtering, and pattern classification. Prerequisite: EECE 231. Alternate years.

EECE 460 Digital Control (3 crs)
This course covers the analysis and design of digital control systems: z-transform techniques; state-space representation; single-input-single-output linear time invariant discrete and continuous systems; controllability, observability; and controllers. Prerequisite: EECE 360. Annually.

EECE 461 Instrumentation (3 crs)
This course covers instrumentation systems, including measurements, sensors, data acquisition, and component integration. Application areas and course projects include industrial control, lab measurements, and automation systems. Prerequisite: EECE 221. Annually.

EECE 462 Power Electronics (3 crs)
This course covers a wide scope of power electronics devices: mainly power diodes, thyristors, triacs, and GTOs; traditional and modern techniques of reactive power control; clipper circuit; uncontrolled and controlled single-phase and three-phase power rectifiers; inverters; DC to DC switching converters (choppers); and introduction to FACTS and HVDC Technologies. Prerequisite: EECE 212. Annually.
EECE 463 Power Systems II (3 crs)
This course is considered as an advanced course in electrical power systems which comprises the short-circuit analysis of electric power networks; three-phase symmetrical and asymmetrical fault calculations; formation of Y-Bus and Z-Bus; load flow; and power flow calculations using numerical iterative techniques. Pre requisite: EECE 361. Annually.

EECE 471 Electronic-Commerce (3 crs)
This course covers the core ideas for electronic commerce infrastructure: E-Marketplaces, retailing in EC, consumer behavior, internet marketing, and advertising, B2B E-commerce, E-supply chains, innovative EC systems , mobile computing and commerce, E-commerce fraud and security, E-commerce payment systems and launching a successful online business and E-commerce projects. Prerequisite: EECE 230. Annually

EECE 472 Data Mining (3 crs)
This course covers concepts and techniques of data warehousing and data mining: data warehouse architecture, data mining concepts and tasks, data preprocessing and reduction, classification techniques, association analysis, clustering analysis and algorithms, data exploration techniques and web mining techniques. Prerequisite: Prerequisite : EECE 230. Annually.

EECE 475 Client-Server Computing (3 crs)
This course covers the internet and intranet technologies: the client-server model of interaction; design and implementation of clients and servers; interactive and concurrent servers; distributed computing; application gateways; and design project. Prerequisite: EECE 470. Alternate years.

EECE 477 Engineering of Internet Services and Applications (3 crs)
This course covers core idea of internet services and applications: internet protocols including IP, ICMP, TCP, UDP; IP Multicast, Mobile IP, IPv6, VPNs, and quality of service; routing on the Internet; network security and firewall design; overview of the application protocols such as SMTP, HTTP, RTP, and SNMP. Prerequisite: EECE 470. Alternate years.

EECE 480 Advanced Electronics (3 crs)
This course covers topics in advanced electronics: amplifiers (BJT, FET, differential); low and high frequency response of amplifiers; feedback circuits; oscillator circuits; A/D and D/A converters; active filters; wave generators; phase-locked loop (PLL). Prerequisite: EECE 212. Annually.

EECE 490 Digital Signal Processing (3 crs)
This course covers digital signal processing: sampling theorems; discrete-time Fourier transform; 1-D and 2-D signals, and filters; speech and image processing; Z-transform; discrete Fourier transform; FFT algorithms; structures for digital filters, digital filter design and implementation. Prerequisite: EECE 230. Alternate years.
EECE 494 Digital Image Processing (3 crs)
This course covers two-dimensional signals and systems; image formation and perception; representation, coding, filtering restoration and enhancements; feature extraction and scene analysis; introduction to computer vision. *Prerequisite: EECE 230. Alternate years.*

EECE 498 Special Topics in Electrical and Computer Engineering (1-3 crs)
This course will cover a particular topic suggested by a faculty member and conducted by a student with required prerequisites, varying from semester to semester. *Prerequisite: permission of the instructor, and approval of the Department.*
Information Technology Minor

Introduction

The minor in Information Technology (IT) addresses a growing demand for graduates with professional IT skills. This minor intends to bridge the gap between scientific computing and engineering of computer systems and their applications in various domains, environments and platforms. The structure of the minor reflects the skills and knowledge needed to professionally apply complex information technology in business-driven environments. The IT minor helps in fulfilling the global need for professionals to acquire IT foundations.

Objectives

The IT minor introduces students to the discipline, and provides a fundamental set of skills and knowledge on professionally applying networks, computer and hardware systems, software systems, IT in organizations, and information analysis. IT minor complements many majors in different disciplines. The objective of the IT minor is to satisfy the needs of professionals that need to apply IT to various majors excluding the following: Electrical & Electronics Engineering, Computer & Communications Engineering, Software Engineering, Computer Science, or Management Information Systems.

Requirements

Students may apply by filling a minor application form available from the ECE Department. The minor will be indicated on the transcript of the student who completes all the requirements, and who obtains an average in the minor courses of 70 or more. Additionally, all rules and standards that normally apply to the major degree courses shall apply to the minor courses.

Courses

The IT minor reflects the requirements of business and engineering related knowledge and skills. The minor comprises 6 courses (equivalent to 18 credits) organized as follows:

Core IT Courses

This set consists of the following two courses comprising six credit hours:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEC 201</td>
<td>Computer Systems</td>
<td>3</td>
</tr>
<tr>
<td>ITEC 202</td>
<td>Software Systems</td>
<td>3</td>
</tr>
</tbody>
</table>
Elective Courses

This set consists of four courses comprising twelve credit hours. One course must be selected from each of the following groups.

Technical elective(s)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 130</td>
<td>Computers and Programming I (for non-Mechanical Engineering students)</td>
<td>3</td>
</tr>
<tr>
<td>EECE 230</td>
<td>Computers and Programming II</td>
<td>3</td>
</tr>
<tr>
<td>EECE 231</td>
<td>Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>EECE 320</td>
<td>Computer Organization and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>EECE 330</td>
<td>Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EECE 411</td>
<td>Computer Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EECE 422</td>
<td>Information Theory and Coding</td>
<td>3</td>
</tr>
<tr>
<td>EECE 430</td>
<td>Design and Applications of Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>EECE 433</td>
<td>Database Management Systems</td>
<td>3</td>
</tr>
<tr>
<td>EECE 470</td>
<td>Computer Networks</td>
<td>3</td>
</tr>
<tr>
<td>EECE 475</td>
<td>Client-Server Computing</td>
<td>3</td>
</tr>
<tr>
<td>EECE 477</td>
<td>Internet Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Any other course approved by the Department</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applied computer systems elective courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 362</td>
<td>Accounting Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 420</td>
<td>Internet Programming and Web Design</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 365</td>
<td>Information and Communication Technologies (ICT in Education)</td>
<td>3</td>
</tr>
<tr>
<td>FINA 362</td>
<td>Computer Applications in Finance</td>
<td>3</td>
</tr>
<tr>
<td>MISS 305</td>
<td>Introduction to MIS</td>
<td>3</td>
</tr>
<tr>
<td>MISS 355</td>
<td>Web Applications</td>
<td>3</td>
</tr>
<tr>
<td>MISS 360</td>
<td>Project Management for Business Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 355</td>
<td>E-Business</td>
<td>3</td>
</tr>
<tr>
<td>Any other course approved by the Department</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Management elective(s)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 355</td>
<td>EDP Auditing</td>
<td>3</td>
</tr>
<tr>
<td>BUSS 355</td>
<td>Business Policy and Strategy</td>
<td>3</td>
</tr>
<tr>
<td>ECON 201</td>
<td>Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>FINA 201</td>
<td>Business Finance I</td>
<td>3</td>
</tr>
<tr>
<td>MNGT 201</td>
<td>Management I</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 101</td>
<td>Principles of Marketing</td>
<td>3</td>
</tr>
<tr>
<td>MISS 301</td>
<td>Introduction to Business Programming</td>
<td></td>
</tr>
<tr>
<td>Any other course approved by the Department</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The core courses are designed to ensure all IT minor students achieve a similar level of proficiency that will enable them to tackle the elective courses. The list of electives in the three areas shown below may be updated at any time. Furthermore, students may submit a petition to the College of Engineering if they wish to take an elective that is not included in these lists.

Core IT Course Descriptions

ITEC 201 Computer Systems (3 crs)
The course provides an encompassing introduction to basic electric circuits, basic electronics, logic systems, computer organization, and embedded systems. The course also introduces computer networks and its applications. The course focuses on how computer systems work and surveys modern life applications benefited from the evolution of computer systems. Annually.

ITEC 202 Software Systems (3 crs)
The course introduces different types of software systems and the processes of their development. It deals with software standards, installation, configuration, test scenarios and cases, adaptation and maintenance. As part of software products, the course introduces licensing and certification as well as into software contracts and documentation. Software aspects related to the internet, e.g. HTML and java script, portals, search engines, security, encryption, context-sensitive profiling and information search, will be addressed. Annually.

Non-Core IT Courses
The remaining courses listed are described in the University catalogue.
DEPARTMENT OF MECHANICAL AND MECHATRONICS ENGINEERING

Personnel

Department Chairperson (Acting): Grami, Said
Assistant Professors: Abbassi, Fethi; Al-Janabi, Abdullah
Workshop Technician: Khan, Muhammed

Mission

The mission of the Department of Mechanical and Mechatronics Engineering (MME) is to educate students from the science stream background in the fundamental skills, knowledge, and practice in mechanical and mechatronics engineering that would enable them to provide quality engineering services in manufacturing industries, contribute to the state-of-the-art knowledge and practice in their field and to assume leadership roles in the development of their community.

Objectives

The MME Department is designed around the following set of objectives:

1. To impart a sound understanding of the fundamental principles and concepts of mechanical and mechatronics engineering.
2. To develop the mathematical, scientific and computational skills in formulating and solving mechanical and mechatronics engineering problems.
3. To cultivate the skills pertinent to the engineering design process, conduct of experiments and analyze and interpret data.
4. To engage students in solving real-world problems that requires multi-disciplinary approaches while addressing relevant social, environmental, economical and aesthetic concerns.
5. To develop effective teamwork and communication skills.
6. To prepare students for leading roles in the profession and the community.

Learning Outcomes

Graduates of the MME Department will possess each of the following characteristics and abilities listed below, which constitute the Department learning outcomes, and which are in conformity with the Department objectives. These learning outcomes coincide with the desired outcomes specified under Criterion 3 by ABET:

(a) An ability to apply knowledge of mathematics, science, and engineering.
(b) An ability to identify, formulate, and solve engineering problems.
(c) An ability to conduct experiments, as well as to analyze and interpret data.
(d) An ability to design a system, component, or process to meet desired needs.
(e) An ability to use the techniques, skills, and modern tools necessary for engineering practice.
(f) An ability to appreciate the impact of engineering solutions in both local and global context.
(g) An ability to perform in a team environment.
(h) An ability to communicate effectively.
(i) An understanding of professional and ethical responsibilities.
(j) A demonstration of knowledge of contemporary issues in the field.
(k) An ability to engage in life-long learning.
(l) An ability to engage in undergraduate research.

Degrees Offered

The MME department offers the following degrees:

- Diploma in Mechanical Engineering
- BS in Mechanical Engineering
- Diploma in Mechatronics Engineering
- BS in Mechatronics Engineering

Mechanical Engineering

Career Opportunities

Mechanical engineering is a discipline that covers many areas and therefore provides opportunities for graduates to work in a variety of interdisciplinary fields which include machine design, energy, power generation and conversion, hydraulics, project management, automotive, environment, HVAC, and so on.

Program Overview

The curriculum is designed to allow students who successfully complete the first two years of their study to receive a diploma, while continuing to work to receive the Bachelor of Science Degree upon the successful completion of the four-year program. The Diploma in Mechanical Engineering (ME) is awarded to students who have successfully completed the first two years (75 crs.) of the program.

The first year is common with other engineering majors to allow students to change to other engineering majors during the second year of their study if they wish to do so. The undergraduate curriculum for the degree of Bachelor of Science in ME consists of 138 credit-hours of course work.

The university, college, and program requirements for the bachelor degrees in
the MME majors are listed in the College introductory pages.

Study Plan

Year I

Semester 1 (Fall) 17 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPS 100B</td>
<td>Introduction to Technical Computing for the Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 199</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 170</td>
<td>Fundamentals of Physics I</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 105</td>
<td>Engineering Graphics</td>
<td>2</td>
</tr>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2 (Spring) 16 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 120</td>
<td>Geometry and Trigonometry</td>
<td>3</td>
</tr>
<tr>
<td>EECE 130</td>
<td>Computers and Programming I</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 110</td>
<td>Engineering Workshop</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 100</td>
<td>Introduction to Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MATH 200</td>
<td>Calculus II</td>
<td>3</td>
</tr>
</tbody>
</table>

Year II

Semester 3 (Summer) 9 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 205</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 4 (Fall) 17 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 210</td>
<td>Electric Circuits I</td>
<td>3</td>
</tr>
<tr>
<td>EECE 210L</td>
<td>Electric Circuits Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>MECH 270</td>
<td>Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MECH 272</td>
<td>Mechanical Statics</td>
<td>3</td>
</tr>
<tr>
<td>MECH 271</td>
<td>Industrial Maintenance</td>
<td>3</td>
</tr>
<tr>
<td>MECH 278</td>
<td>Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>MECH 270L</td>
<td>Solid Mechanics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Semester 5 (Spring)</td>
<td>16 Credits</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>MECH 274</td>
<td>Mechanical Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>MECH 274L</td>
<td>Mechanical Dynamics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MECH 275</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MECH 276</td>
<td>Strength of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MECH 277</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MECH 277L</td>
<td>Fluid Mechanics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MECH 279</td>
<td>CAD/CAM and CNC Machines</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6 (Summer)</th>
<th>3 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>MECH 299</td>
<td>Practical training for Diploma Students (8 weeks)</td>
</tr>
<tr>
<td>MATH 210</td>
<td>Differential Equations (for BS students only)</td>
</tr>
</tbody>
</table>

Completion of the Diploma program in ME: Total Credits 75

Year III

Semester 7 (Fall) | 14 Credits
Code	**Course Title**	**Credit Hours**
ENGL 280	Business English	3
MATH 335	Math for Science and Engineering	3
MECH 315L	Thermal Laboratory	1
MECH 371	Heat Transfer	3
MECH 376	Kinematics of Mechanical systems Laboratory Elective	3

Semester 8 (Spring) | 15 Credits
Code	**Course Title**	**Credit Hours**
ENGR 300	Engineering Economy	3
MECH 373	Mechanical Design I	3
MECH 374	Instrumentation and Measurements	3
SOCS 200	World Civilizations II	3
MECH Technical Elective	3	

Year IV

Semester 9 (Summer) | 0 Credits
| **Code** | **Course Title** | **Credit Hours** |
| MECH 400 | Practical Training | 0 |

Semester 10 (Fall) | 16 Credits
Code	**Course Title**	**Credit Hours**
MECH 372	Control Systems + Laboratory	3
MECH 401	Final Year Project I	0
MECH 413	Air Conditioning	3
Two MECH Technical Electives	6	
Science (Biology) Elective	3	
Laboratory Elective	1	
Semester 11 (Spring)
15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 402</td>
<td>Final Year Project II</td>
<td>3</td>
</tr>
<tr>
<td>MECH 431</td>
<td>Mechanical Vibrations</td>
<td>3</td>
</tr>
<tr>
<td>MECH Technical Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Free General Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ARAB 103</td>
<td>Communication skills in Arabic Language</td>
<td>3</td>
</tr>
</tbody>
</table>

Completion of the BS program in ME: Total Credits 138

Course Descriptions

Core Courses

MECH 270 Properties of Materials
(3 crs)
This course covers the different types of materials: metals, ceramics, polymers; type of bonds: ionic, covalent and metallic bonds; unit cells and crystal structures, points, directions and planes within a unit cell; mechanical properties of materials: strength, toughness, ductility, resilience; failure: fatigue, creep. Thermal properties of materials: heat capacity, thermal expansion, thermal conductivity. **Prerequisite: ENGR 100. Annually.**

MECH 270L Solid Mechanics Lab
(1 cr)
This laboratory covers different experiments related to properties of materials; experiments include Hooke’s law, tensile test, bending test, creep test, hardness test, impact test, torsion test, and fatigue test. **Co-requisite: MECH 270.**

MECH 271 Industrial Maintenance
(3 crs)
This course equips students with a variety of technical skill areas such as mechanical installation, power transmission, bearings, shaft alignment, lubrication, fluid power, piping systems, fasteners, and safety at the workplace. **Prerequisites: ENGR 100, ENGR 110.**

MECH 272 Mechanical Statics
(3 crs)
This course covers the following topics: force vector, 2-D system of vectors, moment, couple, resultants, static equilibrium of 2-D forces and moments, centroid, truss, friction. **Prerequisites: ENGR 100, PHYS 170, Co-requisite MATH 199.**

MECH 274 Mechanical Dynamics
(3 crs)
This course covers the following topics: position, velocity and acceleration of a particle, equations of motion for constant acceleration, Newton’s Laws, mechanical work, energy and power, impulse, impact, coefficient of restitution, conservation of momentum, spring stiffness. **Prerequisites MECH 272, MATH 200. Annually.**
MECH 274L Mechanical Dynamics Laboratory
This laboratory covers the following experiments: falling objects, projectile motion, acceleration and force, Newton’s third law, tension, conservation of momentum, conservation of energy: free fall, pendulum, spring, roller coaster; oscillation; rotational inertia. Prerequisite: MECH 274.

MECH 275 Thermodynamics
This course covers the following topics: basic considerations of the three laws of thermodynamics, open and close systems, two phase systems, steam tables and charts, elementary statistical principles for the prediction of properties of pure substances and mixtures, system and control volume analysis of thermodynamic processes, irreversibility, Entropy, relations for ideal gas mixtures. Prerequisites: ENGR 100, MATH 200.

MECH 276 Strength of Materials
This course covers the different types of stress and strain induced by different types of loading: axial loading, torsion, pure bending: shear force and bending moment diagrams; stress concentration; analysis and design of beams in bending; shearing stresses in beams and thin-walled members; deflection of beams. Co-requisite: MECH 270 and Prerequisite: MECH 272.

MECH 277 Fluid Mechanics
This course covers the basic concepts of fluid mechanics: properties of fluids, pressure and fluid statics, hydrostatic forces, fluid kinematics, conservation of mass, conservation of energy, fluids in rigid body translational and rotational motions, Bernoulli’s equation, momentum analysis of flow systems. Prerequisites: MECH 272, MATH 200.

MECH 277L Fluid Mechanics Laboratory
This laboratory covers different experiments that may include: measurement of flow rate, Bernoulli’s theorem, centre of pressure, floatation characteristics, centrifugal pumps, cavitations in centrifugal pumps, characteristics of two pumps in series, pipe friction losses, friction in bends and fittings, momentum of flow, Pelton turbine, hydraulic Ram Pump, free and forced vortices. Co-requisite: MECH 277.

MECH 278 Manufacturing Processes
This course covers descriptive introduction to a wide variety of manufacturing processes: metal casting, powder metallurgy, sheet metal working, bulk deformation, fundamentals of machining, machining operation and machine tools. The course also covers dimensions, tolerance and surfaces, as well as a review of the classification of materials. Prerequisite: ENGR 100. Annually.

MECH 279 CAD/CAM and CNC Machines
This covers the principles, techniques, and applications of computer numerically controlled (CNC) machine tools. G and M code programming of industrial machines, tooling systems, introduction to Computer Aided Drafting and Manufacturing (CAD/CAM) systems, introduction to the principle of Flexible
Manufacturing Systems (FMS), and hands-on training on CNC machine.

Prerequisite: MECH 273. **Annually**

MECH 299 Practical Training *(0 cr)*

Eight weeks of supervised project/internship aimed at providing practical experience for Mechanical Engineering diploma students.

Prerequisite: Permission of the Instructor.

MECH 315L Thermal Laboratory *(1 cr)*

This laboratory is meant to compliment the thermodynamics and heat transfer courses. Experiments include: linear heat conduction, radial heat conduction, combined convection and radiation, extended surface heat transfer, heat exchangers, saturation pressure, expansion processes of a perfect gas, steam power plant cycle.

Co-requisite: MECH 371.

MECH 371 Heat Transfer *(3 crs)*

This course covers the mechanism and basic equations for conduction, convection and radiation, steady-state one dimensional conduction heat transfer, cartesian and cylindrical coordinates, resistance concept for plane wall & radial systems, contact resistance, multi-layer plane walls and radial systems, extended surfaces, forced convection dimensional analysis, natural convection, internal flows in tubes, heat exchangers, LMTD and e-NTU methods of design.

Prerequisites: MECH 275, MECH 277. **Annually.**

MECH 372 Control Systems + Lab *(2 crs. Lec. 1 cr. Lab)*

This course covers the basic concepts of control theory: plant, controller, process, open-loop, feed-back control; Laplace transform; mathematical modeling of dynamic systems; state-space; Linearization; transient and steady-state responses; stability; frequency-response analysis: bode diagram, Nyquist plots; lab may include software application (e.g. MATLAB or LabVIEW) and/or hardware equipment (inverted pendulum, level, pressure, temperature, motor speed control, etc.).

Prerequisite: MATH 210. **Annually.**

MECH 373 Mechanical Design I *(3 crs)*

This course covers a review of stress, strain, and deflection; combined loading; Mohr’s circles, principal stresses and maximum shear stress; static failure theories; fatigue failure theories; surface failure; design of different mechanical components: shafts, keys, couplings; columns; bearings and lubrication; introduction to finite element analysis (FEA).

Prerequisite: MECH 276. **Annually.**

MECH 374 Instrumentation & Measurements *(3 crs)*

This course covers the whole spectrum of measurement and instrumentation concepts: sensor classification, calibration and characteristics; measurement chain and interfacing concepts; data acquisition, manipulation, transmission, and recording; measurement of various physical variables; computer application (e.g. LabVIEW); and practical team project.

Prerequisites: EECE 210 and MATH 205.

MECH 376 Kinematics of Mechanical Systems *(3 crs)*
This course covers the following topics: kinematics fundamentals, Grashof condition, graphical linkage syntheses, position analysis, computer-aided mechanism design, velocity analysis using graphical and analytical methods, acceleration analysis using analytical and graphical methods, dynamic force analysis, balancing of rotating machineries. Prerequisite: MECH 274. Annually.

MECH 400 Approved Experience (0 cr)
Supervised project/internship aimed at providing practical experience for Mechanical Engineering bachelor students. Prerequisite: Permission of the Instructor.

MECH 401 Final Year Project I (0 cr)
A supervised project, normally in groups of three students, aimed at providing a practical experience in some aspects of mechanical engineering. Students are expected to complete a literature survey, project specification, critical analysis, and to acquire the necessary material needed for their intended end product.

MECH 402 Final Year Project II (3 crs)
A course in which the students integrate their acquired knowledge and skills to deliver the product researched and planned in MECH 401. Prerequisite: MECH 401.

MECH 413 Air Conditioning (3 crs)
This course covers the following: review of basic concepts and fundamentals of thermodynamics, psychrometry, human comfort, heat transfer in residential building, heating load calculations, cooling load calculations, required air quantities for cooling or heating. Prerequisite: MECH 275. Annually.

MECH 431 Mechanical Vibrations (3 crs)
This course covers the response of discrete single, two- and multi-degree of freedom systems to vibration, free and forced vibration, response of damped and undamped systems to vibration, damping cases: underdamped, critically damped and overdamped systems, Lagrange’s equation, base excitation, rotating imbalance, vibration Isolation, introduction to human responses to vibration. Prerequisite: MECH 274, Co-requisite MATH 210. Annually.

Major Electives

MECH 314 Fluid Power (3 crs)
This course covers the following topics: fundamental concept of fluid power transmission, properties of conventional fluid, control valves, positive and non positive displacement pumps, compressors, motors, cylinders, electro-hydraulic and pneumatic valves, graphical symbols, circuit and systems, compressible fluid properties, and applications of fluid power. Prerequisite: MECH 277.

MECH 410 PLC and Industrial Automation (3 crs)
This course covers PLC operation, PLC memory, ladder logic; structured logic, flowchart-based, and state-based design, instruction list and structured text
programming, Interface of sensors, actuators, and I/O devices, selecting PLC, projects. Prerequisite: MECH 374.

MECH 412 Internal Combustion Engines (3 crs)
This course covers the fundamental principles underlying the theory and analysis of reciprocating internal combustion engines, fuels, carburetion, combustion, exhaust emissions, detonation, fuel injection, and factors affecting performance. Prerequisite: MECH 275.

MECH 413L HVAC and Refrigeration Laboratory (1 cr)
This laboratory covers the following experiments: different air conditioning processes, sensible heating, sensible cooling, humidification, heating and humidification, cooling and dehumidification. It also covers experiments on the refrigeration cycle, cooling towers and small and ducted split systems. Prerequisite: MECH 413.

MECH 414 Gas Turbines (3 crs)
This course covers the thermodynamic and aerodynamic theory that forms the basis of gas turbine design: shaft power cycles; gas turbine cycles; turbofan and turbojet engines; design and analysis of centrifugal and axial flow compressors and turbines. Prerequisites: MECH 275 and MECH 277.

MECH 415 Steam Turbines (3 crs)
This course covers the following topics: impulse and reaction steam turbines, steam turbine cycles, flow of steam in nozzles, design aspects of turbines, stage losses and efficiency, velocity diagrams; impulse and reaction blading velocities; nucleation, condensation and two-phase phenomena in flowing steam. Prerequisites: MECH 275 and MECH 277.

MECH 416 Fluids Engineering Application (3 crs)
This course covers the following topics: potential flow and boundary layer analysis; lift and drag; flow separation; viscous internal channel flow and lubrication theory; compressible flow in nozzles and ducts; normal shock waves and channel flow with friction or heat transfer; fluid machinery including pumps and hydraulic turbines. Prerequisite: MECH 277.

MECH 417 Thermal Power Plant (3 crs)
This course covers the fundamental principles, theory, design and operation of thermal power plants. It also covers available technologies behind the existing thermal power plants and the up-to-date technologies available for future plants. Topics covered include: thermodynamic power cycles, energy conversion, boilers and furnaces, energy economy and analysis and sustainable power generation. Prerequisites: MECH 275 and MECH 277.

MECH 430 Mechatronics and Intelligent Machines Engineering (3 crs)
This course covers the following topics: electromechanical systems and mechatronics; data; numbering systems, microcontroller, assembly language programming, A/D and D/A conversion; parallel I/O, programmable timer
operation, interfacing sensors and actuators, applications; design project and implementation of a mechatronics system. Prerequisite: MECH 374.

MECH 441 Mechanical Design II (2 crs. Lec. 1 cr. Lab)
This course covers the design and selection of mechanical elements including gears, (spur, helical, bevel, and worm gears), springs, screws and fasteners, clutches and brakes, belts and chain drive. The course also includes practical sessions and team project. Prerequisite: MECH 373.

MECH 444 Environmental Impacts of Energy Systems (3 crs)
This course talks about world energy resources and classifications. It covers sources and effects of air pollution, air quality modeling, Gaussian dispersion models, motor vehicles emissions and noise pollution, mitigation strategies, environmental impacts of electricity generation, pollution control systems, electromagnetic radiations. Prerequisite: ENGR 100.

MECH 444L Fuel Cell Laboratory (1 cr)
This laboratory covers the following experiments: the basic functions of the fuel cell system, the characteristic curve of a fuel cell, parameters influencing the characteristic curve, determination of the hydrogen current curve, efficiency of the fuel cell stack, set-up of a fuel cell power supply, efficiency of a fuel cell power supply, characteristic curves of the solar panel, solar power-fuel cell hybrid, parallel and series switching of fuel cells, and examples of fuel cell applications. Prerequisite: ENGR 100.

MECH 450 Computer Applications in Mechanical Engineering (3 crs)
This course teaches students how to use computer software to solve problems from various topics of mechanical engineering; topics may include but not restricted to stress analysis, vibration, heat transfer, and fluid flow. Computer applications may include but not restricted to the use of finite element method software, MATLAB and CFD. Prerequisite: EECE 130, and one of the following: MECH 277, MECH 371, MECH 373, MECH 431.

MECH 453 Robotics (3 crs)
This course covers the following topics: introduction to robotics, coordinate systems, robot arms, end effectors, sensors, application of sensors in robots, programming of robots, safety considerations. Prerequisite: MECH 374.

MECH 454 Artificial Intelligence (3 crs)
This course covers the following topics: introduction to artificial intelligence (AI), knowledge perception, predicate logic, machine learning, decision tree learning, two and multiple layers artificial neural networks (ANN), logic programming, genetic algorithms, genetic programming. Prerequisites: EECE 130 and MATH 335.

MECH 455 Hydraulics (3 crs)
This course covers the fundamental and operating principles of hydraulics and pumps/turbines: applied principles and practical features of hydraulics and
pumps/turbines, internal flow in conduits, turbo-machinery, classifications of pumps, Classifications of hydraulic turbines. *Prerequisite MECH 277.*

MECH 490 Renewable Energy (3 crs)
This course covers the whole spectrum of renewable energy: wind, solar, tidal, biomass, etc. The course also covers hybrid system as well as nuclear energy and its role in the 21st century (and beyond) and how it fits in with other forms of “renewable energy”. *Prerequisite: MECH 275.*

MECH 499 Special Topics in Mechanical Engineering (1-3 crs)
This independent course will cover a particular topic, varying from semester to semester, in which there is a particular student or staff interest. Prerequisite: *Permission of the Instructor and approval of the Department.*
Mechatronics Engineering

Career Opportunities

The interdisciplinary nature of contemporary engineering systems opens up career opportunities for a mechatronics engineer in any engineering fields involving machinery and embedded intelligence. This includes but is not limited to: the electronics industry, automotive industries, forensic sciences, power generation industry, petrochemical industry, biomedical systems, the entertainment industry, media, forensic sciences, and so on.

Program Overview

The Mechatronics Engineering program offers two undergraduate degrees: the 2- year Diploma in Mechatronics Engineering degree and the 4- year Bachelor of Science (BS) in Mechatronics Engineering degree. The first common year with other engineering majors will allow students to switch between the engineering majors at the start of the second year of their study.

The curriculum is designed to comply with the requirements of the Accrediting Board of Engineering and Technology (ABET), which comprise at least 30 credit-hours of mathematics and basic sciences, at least 62 credit-hours of engineering sciences and engineering design, and at least 12 credit-hours of social sciences and humanities, excluding language and technical writing courses.

The university, college, and program requirements for the bachelor degree in mechatronics engineering are listed in the College introductory pages.

Study Plan

<table>
<thead>
<tr>
<th>Year I</th>
<th>Semester 1 (Fall)</th>
<th>17 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>CMPS 100B</td>
<td>Introduction to Technical Computing for the Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 199</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 170</td>
<td>Fundamentals of Physics I</td>
<td>3</td>
</tr>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 105</td>
<td>Engineering Graphics</td>
<td>2</td>
</tr>
<tr>
<td>Semester 2 (Spring)</td>
<td>17 Credits</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>MATH 120</td>
<td>Geometry and Trigonometry</td>
<td>3</td>
</tr>
<tr>
<td>EECE 210</td>
<td>Electric Circuits I</td>
<td>3</td>
</tr>
<tr>
<td>EECE 210L</td>
<td>Electric Circuits Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 110</td>
<td>Engineering Workshop</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 100</td>
<td>Introduction to Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MATH 200</td>
<td>Calculus II</td>
<td>3</td>
</tr>
</tbody>
</table>

Year II

<table>
<thead>
<tr>
<th>Semester 3 (Summer)</th>
<th>9 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
</tr>
<tr>
<td>MATH 205</td>
<td>Calculus III</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 4 (Fall)</th>
<th>16 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>EECE 130</td>
<td>Computers and Programming I</td>
</tr>
<tr>
<td>TRON 130L</td>
<td>Programming Laboratory</td>
</tr>
<tr>
<td>EECE 212</td>
<td>Electronics I</td>
</tr>
<tr>
<td>TRON 213</td>
<td>Digital Logic Fundamentals</td>
</tr>
<tr>
<td>MECH 272</td>
<td>Mechanical Statics</td>
</tr>
<tr>
<td>MECH 271</td>
<td>Industrial Maintenance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5 (Spring)</th>
<th>16 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>TRON 214</td>
<td>Introduction to Mechatronics + Laboratory</td>
</tr>
<tr>
<td>TRON 274</td>
<td>Instrumentation and Measurements</td>
</tr>
<tr>
<td>TRON 274L</td>
<td>Instrumentation and Measurements Laboratory</td>
</tr>
<tr>
<td>MECH 274</td>
<td>Mechanical Dynamics</td>
</tr>
<tr>
<td>MECH 274L</td>
<td>Mechanical Dynamics Laboratory</td>
</tr>
<tr>
<td>MECH 276</td>
<td>Strength of Materials</td>
</tr>
<tr>
<td>MECH 279</td>
<td>CAD/CAM and CNC Machines</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6 (Summer)</th>
<th>3 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>MECH 299</td>
<td>Practical training for Diploma Students</td>
</tr>
<tr>
<td>MATH 210</td>
<td>Differential Equations (for BS students only)</td>
</tr>
</tbody>
</table>

Completion of the Diploma program in MTE: Total Credits 75
Year III

Semester 7 (Fall)
15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 280</td>
<td>Business English</td>
<td>3</td>
</tr>
<tr>
<td>MATH 335</td>
<td>Math for Science and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>TRON 310</td>
<td>Microcontroller Programming and Interface + Lab</td>
<td>3</td>
</tr>
<tr>
<td>TRON 312</td>
<td>Thermofluid Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MECH 376</td>
<td>Kinematics of Mechanical systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 8 (Spring)
15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 300</td>
<td>Engineering Economy</td>
<td>3</td>
</tr>
<tr>
<td>MECH 373</td>
<td>Mechanical Design I</td>
<td>3</td>
</tr>
<tr>
<td>TRON 311</td>
<td>Embedded Systems Design + Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilizations II</td>
<td>3</td>
</tr>
<tr>
<td>EECE 340</td>
<td>Signals and Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Year IV

Semester 9 (Summer)
0 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRON 400</td>
<td>Practical Training</td>
<td>0</td>
</tr>
</tbody>
</table>

Semester 10 (Fall)
15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRON 472</td>
<td>Control Systems + Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>TRON 401</td>
<td>Final Year Project I</td>
<td>0</td>
</tr>
<tr>
<td>MECH 431</td>
<td>Mechanical Vibrations</td>
<td>3</td>
</tr>
<tr>
<td>TRON 410</td>
<td>PLC and Industrial Automation + Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>TRON 313</td>
<td>Fluid Power</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Science Elective</td>
<td></td>
</tr>
</tbody>
</table>

Semester 11 (Spring)
15 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRON 402</td>
<td>Final Year Project II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Two TRON Technical Electives</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Free General Elective</td>
<td>3</td>
</tr>
<tr>
<td>ARAB 103</td>
<td>Communication skills in Arabic language</td>
<td>3</td>
</tr>
</tbody>
</table>

Completion of the BS program in MTE: Total Credits 138

Course Descriptions

Core Courses

MECH 271 Industrial Maintenance
(3 crs)
This course equips students with a variety of technical skill areas such as mechanical installation, power transmission, bearings, shaft alignment, lubrication, fluid power, piping systems, fasteners, and safety at the workplace.
Prerequisites: ENGR 100, ENGR 110.
TRON 130L Programming Lab (1 cr)
This laboratory is meant to provide mechatronics students with hands-on experience in using important engineering software such as LabVIEW, MATLAB, SIMULINK, assembly language, and others. Prerequisite: ENGR 100.

TRON 213 Digital Logic Fundamentals (3 crs)
This course deals with number systems and codes, combinational circuit analysis, synthesis and practices, minimization methods, sequential logic design principles, latches and flip-flops, synchronous circuits, state machines, and an introduction to VHDL. Co-requisite: TRON 212. Annually.

TRON 214 Introduction to Mechatronics + Lab (2 cr. Lec. 1 cr. Lab)
This course covers the following topics: introduction to mechatronics, microcontrollers and event driven programming, nonlinear circuit elements, operational amplifiers, signal conditioning, and PID control, digital I/O, data acquisition systems, sensors, actuators, dc motors, stepper motors, motor sizing, power transmission, digital design and integrated circuits. Prerequisites: TRON 212 and TRON 213.

TRON 274 Instrumentation and Measurements (3 crs)
This course covers the whole spectrum of measurement and instrumentation concepts: sensor classification, calibration and characteristics; measurement chain and interfacing concepts; data acquisition, manipulation, transmission, and recording, measurement of various physical variables, and introduction to LabVIEW. Prerequisites: EECE 210 and MATH 205.

TRON 274L Instrumentation and Measurements Laboratory (1 cr)
This laboratory is offered to compliment the Instrumentation and Measurement course. It gives the students practical experience related to engineering measurements, measuring instrumentations and data acquisitions from all sort of sensors. Co-requisite TRON 274.

TRON 299 Practical Training, for Diploma students (0 crs)
An 8-week professional training course in mechatronics engineering in an established firm or unit.

TRON 310 Microcontroller Programming & Interface + Lab (Lec 2 Lab 1)
This course covers an overview of the HCS12 MCU, instruction set and addressing modes, programming using Assembly and C languages, parallel I/O, serial interface, timers, A/D and D/A, hardware/software development tools, wireless communications, projects. Prerequisites: TRON 130L and EECE 130.

TRON 311 Embedded Systems Design + Lab (2 cr. Lec. 1 cr. Lab)
Embedded technologies; software/hardware platforms and peripherals; processors FPGAs, ASICs; programming models; VHDL; design technologies; Interfacing; control systems; case studies (digital camera, etc.); project. Prerequisite: TRON 213.

TRON 312 Thermofluid Engineering (3 crs)
This course covers the fundamentals of thermodynamics, fluid mechanics and heat transfer: thermodynamics properties of substances, work and heat, closed and open systems, analysis of gas and vapor cycles; fluid at rest, dynamics of fluid flow, Bernoulli and energy equations. **Prerequisite: MECH 272.**

TRON 313 Fluid Power (3 crs)
This course covers the following topics: fundamental concept of fluid power transmission, properties of conventional fluid and compressible fluid, valves, positive and non positive displacement pumps, compressors, motors, cylinders, graphical symbols, circuit and systems. **Prerequisite: TRON 312.**

TRON 400 Approved Experience (0 cr)
An 8- week supervised project/internship aimed at providing practical experience for MTE Engineering bachelor students.

TRON 401 Final Year Project—Design I (0 cr)
A supervised project, normally in groups of three students, aimed at providing practical experience in some aspects of mechanical, computer, communications, and electrical engineering. Students are expected to complete a literature survey, project specification, critical analysis, and to acquire the necessary material needed for their intended end product.

TRON 402 Final Year Project—Design II (3 crs)
In this course, the students integrate their acquired knowledge and skills to deliver the product researched and planned in TRON 401. **Prerequisite: TRON 401.**

TRON 410 PLC and Industrial Automation + Lab (2 cr. Lec. 1 cr. Lab)
This course covers PLC operation, PLC memory, ladder logic; structured logic, flowchart-based, and state-based design, instruction list and structured text programming, Interface of sensors, actuators, and I/O devices, selecting PLC, projects. **Prerequisite: MECH 374.**

TRON 472 Control Systems + Lab (2 cr. Lec. 1 cr. Lab)
This course covers the basic concepts of control theory: plant, controller, process, open-loop, feed-back control; Laplace transform; mathematical modeling of dynamic systems; state-space; linearization; transient and steady-state responses; stability; frequency-response analysis: bode diagram, Nyquist plots; lab may include software application (e.g. MATLAB or LabVIEW) and/or hardware equipment (inverted pendulum, level, pressure, temperature, motor speed control, etc.). **Prerequisite: MATH 210. Annually.**

TRON 499 Special Topics in Mechatronics Engineering (1-3 crs)
This independent course will cover a particular topic suggested by a faculty member in the program and conducted by a student having the required prerequisites. **Prerequisite: Permission of the Instructor, and approval of the Department.**

Major Electives

291
TRON 411 Technopreneurship (3 crs)
Technology Entrepreneurship and opportunity; technology ventures; business model; business plan; product design; product planning and development; marketing and risk analysis; practical project.

TRON 452 Microprocessor Systems (3 crs)
Microprocessor design principle including operation of machines and instruction cycles, internal CPU architecture including internal register organization, interfacing techniques including main memory and I/O design. *Prerequisite: TRON 213.*

TRON 453 Robotics (3 crs)
This course covers an introduction to robotics, coordinate systems, robot arms, end effectors, sensors, application of sensors in robots, programming of robots, safety considerations. *Prerequisite TRON 214.*

TRON 454 Artificial Intelligence (3 crs)
This course covers an introduction to Artificial Intelligence (AI), Knowledge perception, predicate logic, machine learning, decision tree learning, two and multiple layers artificial neural networks (ANN), logic programming, genetic algorithms, genetic programming. *Prerequisites: EECE 130 and MATH 335.*

TRON 455 Intelligent Systems (3 crs)
This course covers the theory behind different intelligent systems. Comparison of conventional and fuzzy logic, fuzzy set theory, fuzzy logic control systems, fuzzy logic and approximate reasoning, artificial neural networks, feed forward networks and supervised learning, single layer feedback networks, unsupervised learning networks, applications of neural networks in control systems, sensor processing and communications, fuzzy neural integrated systems. *Prerequisites: EECE 130 and MATH 335.*

TRON 456 Computer Integrated Manufacturing (3 crs)
This course covers automation principles and strategies, manufacturing operations, production concepts and mathematical models, material handling, transport, automated storage and retrieval systems, automatic data capture, flexible manufacturing system, automated assembly systems, process planning and concurrent engineering. *Prerequisite: MECH 279.*

TRON 457 Power Electronics and Drives (3 crs)
This course covers the following topics: power semiconductors devices, communication, power converters and control, adjustable speed dc and ac motor drives, applications of microprocessor and digital signal processor in power electronics. *Pre-requisite: TRON 212.*

TRON 458 Micro-electromechanical Systems (3 crs)
This course covers introduction to micro-electromechanical systems (MEMS), materials, lithographic and atomically precise processes, MEMS-based sensors, microactuators, sensor-circuit integration, MEMS design techniques and applications. *Prerequisite: MECH 374.*
TRON 459 Applied Digital Signal Processing (3 crs)
This course covers time-domain and frequency-domain analysis of discrete-time signal systems, FIR and IIR filter design, discrete Fourier transform and FFT algorithms, random signals, digital spectral analysis, system identification technique, DSP-based controller design and industrial analysis techniques.
Prerequisite: MATH 335.
DEPARTMENT OF GRAPHIC DESIGN AND INTERIOR ARCHITECTURE ENGINEERING

Personnel

Department Chairperson (Acting): Bello, Hugo
Assistant Professors: Bello, Hugo; Abdul Jabbar, Mohammed; Cazacova, Liudmila; Eldin, Magdi; Osmen, Wafa; Werner, Astrid
Lecturer: Adam, Khaled
Laboratory Technician: Hidalgo, Maria Christina

Mission

To provide students with a comprehensive education of professional quality that combines studio courses with design theory, history, digital media, and presentation skills. Students will be prepared to develop an active role in the community. The GDIA programs aim to apply international standards combined with awareness of professional ethics and social responsibilities to become cutting edge designers/interior architects, researchers and leaders in their field.

Objectives

The objectives of the department are to:

- Provide students with solid, up-to-date information, professional experience and practice in the discipline.
- Develop creative designers/interior architects who are able to formulate, propose, and carry out design solutions relevant to the needs of people and the environment.
- Encourage research and creative thinking to identify and solve problems in response to user needs.
- Prepare students to play an active role in the community.
- Qualify graduates to work with competence and esthetical professionalism in the field.
- Equip students with the academic tools necessary to pursue a graduate degree in international academic institutions.

Learning Outcomes

Graduates of the GDIA Department will be able to:

- Identify design issues, to conduct research, and to provide solutions.
- Deal with a large scope of design projects, and to understand the different materials and technologies.
- Demonstrate creative and technical abilities for problem solving, and the capacity for critical thinking.
• Apply skills and knowledge in a studio area of concentration with an original creative concept brought into visual form with effective presentation.
• Define and integrate an understanding of the roles graphic designers/interior architects have in today’s world.
• Practice graphic design / interior architecture in various contexts and cultures.
• Operate in a multidisciplinary environment.
• Serve the community in organizations in or within both the public and private sectors.

Degrees Offered

The Graphic Design and Interior Architecture Engineering Department (GDIA) offers the following degree programs:

• Diploma of Graphic Design
• Diploma of Interior Architecture Engineering
• Bachelor of Graphic Design
• Bachelor of Interior Architecture Engineering

Career Opportunities

The integration of diverse disciplines in the Graphic Design (GD) program, including printing design, animation, digital publishing, illustration, multimedia, package design, web design and advertising ensures that graduates of the GD program have many career opportunities from which to choose. Possible employment enterprises include design firms, ministries and governmental agencies, advertising agencies, educational institutes, media and television stations, video editing and animation studios, digital publishing and interactive design, magazine and print production, and web design.

Graduates of the Interior Architecture Engineering (IAE) program can expect to find employment in a wide range of industries and commercial enterprises, including design and construction firms, ministries and governmental agencies, furniture factories and showrooms, educational institutes, television stations, museums, airports, and cultural centers.

Program Overview

Graphic Design

Diploma

To graduate with a Diploma in Graphic Design in the College of Engineering, students must satisfactorily complete 69 credits within two academic years, with an overall minimum average of 65 percent, and a cumulative average of 70 percent in the major courses.
Bachelor Degree

The GD Bachelor Program is designed to meet the National Association of Schools of Art and Design (NASAD) standards for professional undergraduate degree programs. Most credits (at least 65 percent) are dedicated to studies in design, design history, art and design related areas while the remainder is taken in the liberal arts that support studies in design.

Graphic design is way beyond a picture. It is concerned with the promotion of ideas, concepts and principles, marketing of products or services, publicizing of events, or production of entertainment programs through visual communication. It requires keen understanding of the message to communicate and the mood, behavior and preferences of the target audience.

By merging art and technology a graphic designer creates brochures, posters, newsletters, logos, web-sites, animation and TV ads to capture the imagination of the audience and drive purposeful action.

To graduate with a Bachelor Degree in Graphic Design (BGD) in the College of Engineering, students must satisfactorily complete 134 credits taken over eleven semesters within four academic years, with an overall minimum average of 65 percent, and a cumulative average of 70 percent in the major courses. The program requirements are listed in the College introductory page.

Interior Architecture Engineering

Diploma

To graduate with a Diploma in Interior Architecture Engineering (IAE) in the College of Engineering, students must satisfactorily complete 74 credits taken within two academic years, with an overall minimum average of 65 percent, and a cumulative average of 70 percent in the major courses.

Bachelor Degree

The IAE Bachelor Program is designed to meet the Foundation for Interior Design Education Research (FIDER) standards for professional undergraduate degree programs. Most credits (at least 65 percent) are dedicated to studies in design, design history, art and design related areas while the remainder is taken in the liberal arts that support studies in Interior Architecture.

Interior Architecture Engineering combines art and science to create a distinct, functional, and eco-friendly living and working space. It seeks to improve the human condition by focusing on people lifestyle, culture, comfort, health and safety. In a contemporary world, people’s living space extends beyond home into the office, library, museum, airport, train station, or even a shopping center. Central to the IAE activities are drawing up interior elevators, working with lighting plans, furniture selection and layout, material specifications, scheduling, color schemes and space efficiency to maximize comfort,
functionality, and aesthetic of the living space in the context of culture, anthropometrics, ergonomics and more.

To graduate with a Bachelor Degree in Interior Architecture Engineering, students must satisfactorily complete 137 credits taken over eleven semesters within four academic years, with an overall minimum average of 65 percent, and a cumulative average of 70 percent in the major courses.

The university, college, and program requirements for the bachelor degrees in the GDIA department are listed in the College introductory pages.

Study Plans

Diploma and Bachelor Degrees in Graphic Design (GD)

<table>
<thead>
<tr>
<th>Year I</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1 (Fall)</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>GRDS 150</td>
<td>Art History I</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
</tr>
<tr>
<td>GRDS 130</td>
<td>Basic Drawing</td>
</tr>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
</tr>
<tr>
<td>CMPS 100A</td>
<td>Introduction to Technical Computing for the Arts</td>
</tr>
</tbody>
</table>

<p>| Semester 2 (Spring) | Credit Hours |
| Code | Course Title | 15 Credits |
| GRDS 151 | Art History II | 3 |
| GRDS 220 | Digital Media I | 3 |
| GRDS 131 | Color Fundamentals | 3 |
| ENGL 102 | Basic Academic English II | 3 |
| MATH 103 | Mathematics for Social Sciences I | 3 |</p>
<table>
<thead>
<tr>
<th>Year II</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 3 (Summer)</td>
<td>6 Credits</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
<td>3</td>
</tr>
<tr>
<td>Semester 4 (Fall)</td>
<td>18 Credits</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>GRDS 200</td>
<td>GD I Foundation Studio</td>
<td>6</td>
</tr>
<tr>
<td>GRDS 210</td>
<td>Typography I</td>
<td>3</td>
</tr>
<tr>
<td>GRDS 221</td>
<td>Digital Media II</td>
<td>3</td>
</tr>
<tr>
<td>GRDS 232</td>
<td>Photography</td>
<td>3</td>
</tr>
<tr>
<td>Semester 5 (Spring)</td>
<td>15 Credits</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>GRDS 201</td>
<td>GD II Studio</td>
<td>6</td>
</tr>
<tr>
<td>GRDS 211</td>
<td>Typography II</td>
<td>3</td>
</tr>
<tr>
<td>GRDS 222</td>
<td>Introduction to Digital Design</td>
<td>3</td>
</tr>
<tr>
<td>GRDS 233</td>
<td>Illustration</td>
<td>3</td>
</tr>
<tr>
<td>Semester 6 (Summer)</td>
<td>6 Credits</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilization II (for Bachelor students only)</td>
<td>3</td>
</tr>
<tr>
<td>GRDS 299</td>
<td>Practical training (for Diploma students only)</td>
<td>0</td>
</tr>
</tbody>
</table>

Completion of the Diploma program in GD: Total Credits 69

<table>
<thead>
<tr>
<th>Year III</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 7 (Fall)</td>
<td>15 Credits</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>GRDS 302</td>
<td>GD III Advanced Studio</td>
<td>6</td>
</tr>
<tr>
<td>GRDS 352</td>
<td>Graphic Design History</td>
<td>3</td>
</tr>
<tr>
<td>GRDS 322</td>
<td>Motion Graphics</td>
<td>3</td>
</tr>
<tr>
<td>GRDS 340</td>
<td>Professional Practice</td>
<td>3</td>
</tr>
<tr>
<td>Semester 8 (Spring)</td>
<td>15 Credits</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>GRDS 303</td>
<td>GD IV Advanced Studio</td>
<td>6</td>
</tr>
<tr>
<td>GRDS 353</td>
<td>Contemporary GD Theory and Practice</td>
<td>3</td>
</tr>
<tr>
<td>GRDS 423</td>
<td>Interactive Digital Media</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GRDS Elective</td>
<td>3</td>
</tr>
</tbody>
</table>
Year IV

<table>
<thead>
<tr>
<th>Semester 9 (Summer)</th>
<th>0 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>GRDS 400</td>
<td>Practical Training</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 10 (Fall)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>GRDS 404</td>
<td>GD V Advanced Studio</td>
</tr>
<tr>
<td>GRDS 401</td>
<td>Final Year Project I</td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Science/Business Elective</td>
</tr>
<tr>
<td></td>
<td>GRDS Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 11 (Spring)</th>
<th>14 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>GRDS 402</td>
<td>Final Year Project II</td>
</tr>
<tr>
<td></td>
<td>3 GRDS Electives</td>
</tr>
</tbody>
</table>

Completion of Bachelor Degree in GD: Total Credits 134

Course Descriptions

Core Courses

GRDS 130 Basic Drawing
(3 crs)
Freehand drawing with emphasis on the development of skills in perceiving line, shape, form, proportions, shading and rendering techniques in various types of pencils, charcoal and ink. Material and methodology: still life, landscape and life drawing, along with basics in perspective drawing.

GRDS 131 Color Fundamentals
(3 crs)
Fundamentals of color theory and its application for the graphic designer, class lectures and demonstrations followed with exercises in color perception, color mixing, and the use of color symbolism from different cultural perspectives. Application of traditional and digital media.

GRDS 150 Art History I
(3 crs)
A survey and analysis of art and visual culture from pre-history to the 14th century.

GRDS 151 Art History II
(3 crs)
A survey and analysis of art and visual culture from the 15th century to mid 20th century.

GRDS 200 GD I Foundation Studio
(6 crs)
Introduction to two dimensional design. Formal study of basic design foundations including the elements of art (line, shape, form, space, color, value, texture and pattern) and the principles of design (balance, proportion, rhythm, emphasis, and unity). Methods and processes will be demonstrated to develop formal skills of creating good composition with the aim of effective information organization and successful visual communication.

GRDS 201 GD II Studio
(6 crs)
This studio focuses on the development of corporate identity through investigation of abstraction and symbolic representation; the design of logos, and visual identity systems and their basic applications using various imaging techniques and typography. Prerequisite: GRDS 200 or permission of the instructor.

GRDS 210 Typography I (3 crs)
Fundamentals of Latin typography, including history, method and application. Exercises on the study of letterforms, typographic expression, legibility, hierarchy and basic typographic composition.

GRDS 211 Typography II (3 crs)
Fundamentals of Arabic typography, including history, method and application. Exercises cover the study of Arabic letterforms, typographic expression, legibility, hierarchy and basic typographic composition. Students will learn the rules of Arabic writing and distinguish between different types of classic Arabic typefaces.

GRDS 220 Digital Media I (3 crs)
Basics of digital media including Bitmap and vector graphics and how to manipulate both. Students will learn the basics of digital image manipulation and photo editing using Adobe Photoshop® as well as mastering the basics of vector graphic using Adobe Illustrator®. Pre-requisite: CMPS 100A or permission of the instructor.

GRDS 221 Digital media II (3 crs)
Continuation of Digital Media I covering advanced literacy in desktop publishing programs such as: Quark Express® and/or Adobe In Design®, the professional electronic desktop publishing software for the creation of any form of publication, from simple single page to complex multicolor documents. Prerequisite: GRDS 220.

GRDS 222 Introduction to Digital Design (3 crs)
Basic programming that will enable students to create and author web pages. Topics include basic and intermediate hyper text markup language levels, and web authoring analysis with images, texts, links, basic animation using HTML codes, tags, attributes and relevant values. Prerequisite: CMPS 100A.

GRDS 299 Practical Training (for Diploma students only) (0 crs)
Diploma students only are required to undergo 8 - weeks of professional training in graphic design within a qualified firm.

GRDS 232 Photography (3 crs)
Fundamentals of photography. Exercises address the visual qualities of photographic imaging: depth of field, tone, and lighting, while covering basic technical aspects of exposure, developing and printing.
GRDS 233 Illustration (3 crs)
This course introduces Graphic Design and Interior Architecture students to basic illustration techniques and methods with the aim of developing illustration skills that can be employed in design processes. Assignments cover various themes while exploring a wide range of media.

GRDS 302 GD III Advanced Studio (6 crs)
Processes of visual communication through diverse theme-based projects where issues of meaning, analysis/production, audience interpretation and the cultural implications of design are emphasized. Through these projects, aspects of image making, word/image relationships, visual narrative, and information design will be explored. **Prerequisite:** GDRS 201.

GRDS 303 GD IV Advanced Studio (6 crs)
Printed publication design, covering the design of books, magazines, newsletters, corporate catalogues, etc. Emphasis is on the relationship between visual/editorial organization and information hierarchy through the innovative use of grid systems and coordination of typography (Arabic and Latin) with photography, illustration and other visual and graphic tools. **Prerequisite:** GRDS 302.

GRDS 322 Motion Graphics (3 crs)
Introduction to visual narrative, storyboarding, and animation in time-based media platforms. Exercises focus on the temporal, spatial and sequential organization of image and sound. **Prerequisite:** GRDS 221.

GRDS 340 Professional Practice (3 crs)
This course prepares students for the professional world. Starting with self promotion, resume writing, building up a portfolio then addressing ways to set up a professional practice, client handling, scheduling projects, writing estimates, billing, etc., while covering the basic knowledge of pre-press production, and press inspection. The material is covered through lectures, discussions, assignments, field trips to design and/or ad agencies and training at printing presses.

GRDS 352 Graphic Design History (3 crs)
Conceptualization of graphic design as a critical discipline directed by various interpretative inquiries into the history and theory of visual communication. Starting with early cave paintings, moving to symbols and writing, through to the Gutenberg’s 42-line bible as the first specimen of movable type printing, the course covers the period from 10,000 BC until the end of 20th century, with an emphasis on the 20th century.

GRDS 353 Contemporary GD Theory and Practice (3 crs)
Current discourse in graphic design through critical investigations of its theory and practice. The course material will be addressed in a seminar format, with student presentations, class discussions, critical research and writing.
GRDS 400 Practical Training (0 crs)
Bachelor students are required to undergo eight-week of professional training at a graphic design studio, advertising agency, television station, or publisher that has been pre-approved by the department. Prerequisite: GRDS 340.

GRDS 404 GD V Advanced Studio (6 crs)
Corporate branding, advertising campaigns for print and on-screen display, mass and prestige package design, and TV commercials. Different phases of consumer behavior and how to organize an advertising message using business and design principles. Producing basic branding TV commercials using a standard TV system and investigating the compression, frame rate, and field order and their effect on the overall quality of the commercial. Prerequisite: GRDS 303 or permission of the Instructor.

GRDS 423 Interactive Digital Media (3 crs)
This course is an introduction to interactivity and information design in multimedia platforms such as Flash, Dreamweaver and/or Director. Exercises cover the various areas where interactivity is used ranging from interactive CDs to web design Prerequisite: GRDS 322.

GRDS 401 Final Year Project I (3 crs)
A research-oriented course to assist students in preparing for their final project to be conducted in GRDS 402. Students are expected to explore graphic design issues of their choice that have been approved by the faculty, and present their findings in a written research document. They work independently and in consultation with a chosen advisor. Work in progress is presented and discussed with a panel of supervisors over the course of the semester. Students will also create a professional quality digital portfolio of their best work produced throughout their years of study in the GD program. Prerequisite: GRDS 353 or permission of the Instructor.

GRDS 402 Final Year Project II (5 crs)
Students are expected to synthesize the acquired knowledge and skills and develop the components addressed in GRDS 401 into a significant graphic design project. Students will work independently and in consultation with a chosen supervisor. At the end of the semester, completed projects are to be presented for evaluation, all of the students’ respective portfolios submitted in GRDS 401 should be also presented to a jury of faculty members and invited professionals. Prerequisites: GRDS 401, GRDS 404 or permission of Instructor.
Elective Courses

GRDS 406 Advanced 3D Package Design (3 crs)
Principles of design as applied to the development of advanced three-dimensiona
n1
l product graphics. Students will explore 3-dimensional designs and processes, and h
n1
ow they relate to advertising design. Familiarization with materials, processes and
n1
procedures of 3-D design, and the requirements necessary to scale, and construct var
n1
ious dimensional pieces will be studied. Materials, processes, industry guidelines
n1
and restrictions will be addressed as they pertain to planning, building and applying
surf a
n1
treatments to 3D Packages. Prerequisite: 3rd or 4th year Graphic Design or Interior
Architecture major students, or permission of the Instructor.

GRDS 424 Introduction to Flash (3 crs)
Design and development of a multimedia website. This site can be dedicated to a
portfolio of their artwork, which may be uploaded on the internet or presented on a CD
to show to future employers. The various elements of multimedia (graphics, animation
and video) can be brought together to create an exciting presentation. This knowledge
will not only assist in building websites, but will also help one build almost any type of
presentation for a potential audience—one that will keep them engaged and interested in
the message. Prerequisite: 3rd or 4th year Graphic Design or Interior Architecture
major students, or permission of the Instructor.

GRDS 425 Web Design (3 crs)
In this elective course, the students will build on previous experience in website
design with the use of Dreamweaver software. Students will create advanced web
designs, upload them to a server and deal with website updates. Topics include:
basic and advanced scripting. Best practices and industry standards, including
support for advanced CSS use, XML and RSS feeds, and accessibility requirements.
WebDAV, digest authentication and SSL for secure file transfer, wider array of
servers. Website analysis, audience needs and usability. Prerequisite: 3rd or 4th year
Graphic Design or Interior Architecture major students, or permission of the Instructor.

GRDS 426 Interface Design (3 crs)
This course is designed for students specializing in the area of web and interactive
media design as well as instructional design. It focuses on how interface design affects
the usability of websites and interactive software. Students will gain skills in designing
an effective interface. The graphic and/or instructional designer's challenge is to make
the navigation of a website easy and intuitive and to ensure that the information on the site
is communicated clearly. Current interface design standards, and their application for
designing and building websites. Prerequisite: 3rd or 4th year Graphic Design or Interior
Architecture major students, or permission of the Instructor.
GRDS 427 Video Compositing (3 crs)
Video compositing is widely used for digital post-production of film, video, DVD, and the web. Deployment of 2D and 3D tools for compositing, animation, and effects that motion graphics professionals, visual effects artists, web designers, and film and video professionals need. Fundamentals of video compositing theories and techniques. Methods and exercises for creating layers of different graphic formats and compositing them together to produce a single output using the tools available like masking, animated text, camera tracking and color correction. Prerequisite: GRDS 322.

GRDS 428 TV Fundamentals (3 crs)
Fundamentals of TV and video production. Graphic materials in TV professional process, the main TV production stages, and the standard TV broadcasting colors. The difference between computer monitor and standard TV screen in means of aspect ratio, color capabilities, resolution, frame rate, etc. Professional video shooting, cameras and light adjusting in the TV studio, and the main video distribution media (including videotape, CD-ROM, and the World Wide Web). Prerequisite: GRDS 322.

GRDS 434 Painting (3 crs)
Line drawing, color and composition, with emphasis on all relevant aesthetics. Solid foundation of practical as well as technical approaches to painting. Individual and group instruction and assignments. Still life, composition, portrait, human figure, and landscape. Knowledge of painting techniques to formalize their own creative vision and expression. 3rd or 4th year Graphic Design or Interior Architecture major students, or permission of the Instructor. Elective.
Diploma and Bachelor Degrees in Interior Architecture Engineering (IAE)

<table>
<thead>
<tr>
<th>Year I</th>
<th>Semester 1 (Fall)</th>
<th>18 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>INTA 130</td>
<td>Architectural Drawing I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Basic Academic English I</td>
<td>3</td>
</tr>
<tr>
<td>GRDS 130</td>
<td>Basic Drawing</td>
<td>3</td>
</tr>
<tr>
<td>ARAB 101</td>
<td>Academic Writing in Arabic</td>
<td>3</td>
</tr>
<tr>
<td>INTA 150</td>
<td>History of Architecture & Interior Design I</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 100A</td>
<td>Introduction to Technical Computing for the Arts</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2 (Spring)</th>
<th>17 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>INTA 151</td>
<td>History of Architecture & Interior Design II</td>
</tr>
<tr>
<td>GRDS 131</td>
<td>Color Fundamentals</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Basic Academic English II</td>
</tr>
<tr>
<td>INTA 131</td>
<td>Architectural Drawing II</td>
</tr>
<tr>
<td>INTA 201</td>
<td>Interior Architecture Foundation Studio I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3 (Summer)</th>
<th>9 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>SOCS 102</td>
<td>Omani Society</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Advanced Academic English I</td>
</tr>
<tr>
<td>MATH 103</td>
<td>Mathematics for Social Sciences I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year II</th>
<th>Semester 4 (Fall)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>INTA 202</td>
<td>Interior Architecture Studio II</td>
<td>5</td>
</tr>
<tr>
<td>INTA 202A</td>
<td>Design Theories I</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 204</td>
<td>Advanced Academic English II</td>
<td>3</td>
</tr>
<tr>
<td>INTA 220</td>
<td>Introduction to Computer Aided Drawing</td>
<td>3</td>
</tr>
<tr>
<td>INTA 240</td>
<td>Interior Construction</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5 (Spring)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>INTA 203</td>
<td>Interior Architecture Studio III</td>
</tr>
<tr>
<td>INTA 203A</td>
<td>Design Theories II</td>
</tr>
<tr>
<td>SOCS 200</td>
<td>World Civilization II</td>
</tr>
<tr>
<td>INTA 234</td>
<td>Modeling & Rendering</td>
</tr>
<tr>
<td>INTA 221</td>
<td>Advanced Computer Aided Drawing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6 (Summer)</th>
<th>0 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>INTA 299</td>
<td>Practical Training (for Diploma students only)</td>
</tr>
</tbody>
</table>

Completion of Diploma program in IAE: Total Credits 74
<table>
<thead>
<tr>
<th>Year III</th>
<th>Semester 7 (Fall)</th>
<th>17 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>INTA 304</td>
<td>Interior Architecture Studio IV</td>
<td>5</td>
</tr>
<tr>
<td>INTA 304A</td>
<td>Design Theories III</td>
<td>1</td>
</tr>
<tr>
<td>INTA 342</td>
<td>Furniture Design</td>
<td>2</td>
</tr>
<tr>
<td>INTA 235</td>
<td>Color & Light</td>
<td>2</td>
</tr>
<tr>
<td>INTA 241</td>
<td>Materials in Interior Design</td>
<td>2</td>
</tr>
<tr>
<td>INTA 232</td>
<td>Visual Presentation Technique</td>
<td>2</td>
</tr>
<tr>
<td>INTA 250</td>
<td>Environmental Control System in Interiors</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8 (Spring)</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>INTA 305</td>
<td>Interior Architecture Advanced Studio V</td>
</tr>
<tr>
<td>INTA 305A</td>
<td>Design Theories IV</td>
</tr>
<tr>
<td>GRDS 340</td>
<td>Professional Practice</td>
</tr>
<tr>
<td>INTA 344</td>
<td>Advanced Detailing</td>
</tr>
<tr>
<td>INTA 335</td>
<td>Modern Practices in Interior Design</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 9 (Summer)</th>
<th>3 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>INTA 400</td>
<td>Practical Training</td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Science/Business Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 10 (Fall)</td>
</tr>
<tr>
<td>Code</td>
</tr>
<tr>
<td>INTA 406</td>
</tr>
<tr>
<td>INTA 406A</td>
</tr>
<tr>
<td>INTA 491</td>
</tr>
<tr>
<td>INTA 390</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 11(Spring)</th>
<th>13 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>INTA 492</td>
<td>Final Year Project II</td>
</tr>
<tr>
<td>INTA 445</td>
<td>Design Management</td>
</tr>
<tr>
<td></td>
<td>2/3 INTA Elective</td>
</tr>
</tbody>
</table>

Completion of Bachelor program in IAE: Total Credits 137
Course Descriptions

Core Courses

INTA 130 Architectural Drawing I (3crs)
The course will supply the students with basic skills in the graphic communication of visual expressions. Practice will be provided for the control of the line thickness in plans, elevations and sections drawing as well as for generating clarity in spacing and crossing of lines in defining planar elements. These skills will emphasize space geometry expression in two-dimensional drawings. Skills to be addressed include: orthographic and parallel lines drawing techniques as well as lettering.

INTA 150 History of Architecture and Interior Design I (3crs)
This course provides an overview of architecture and interior design’s history development as a collective expression of art, architecture, science and culture times and as a resource to stimulate new ideas of eras spanning from prehistoric times up to the end of the Gothic period. Awareness of design typology, specific elements of interior decoration and ornamentation, furniture design evolution, metal works, ceramic and textile.

INTA 131 Architectural Drawing II (3crs)
This course deals with more complex exercises on parallel line and orthographic drawings as well as with interiors perspective drawings. The knowledge of understanding and use of international conventions of architectural drawing symbols will be given. Architectural drawing phases as well as their content will be highlighted. Skills to be addressed include: orthographic and perspective drawing, interior architecture drawing symbols. Prerequisite: INTA 130

INTA 151 History of Architecture and Interior Design II (3crs)
This course is an overview of architecture and interior design’s history development from early Renaissance until the beginning of Industrial Revolution (18th Century). The course provides the students with comprehensive knowledge of Islamic Architecture and Interior Design’s history as well as with awareness of design typology, specific elements of interior decoration and ornamentation, furniture design evolution, metal works, ceramic and textile. Prerequisite: INTA 150

INTA 201 Interior Architecture Studio I (5 crs)
The course is designed to provide students with communication skills and visual studies through 2D and 3D drawings. A set of projects given during the course will provide students with basics knowledge of design elements such as concept, space, scale, proportion, movement, texture, color and light. Skills to be addressed: small scale residential buildings interiors design (spaces types and relationships, sizes and functions) projects; projects presentation; modeling. Prerequisites: INTA 130, GRDS 130

INTA 202 Interior Architecture Studio II (5 crs)
The course continues the content and purpose of INTA 201 and concentrates on students’ design skills improvement. Skills to be addressed: medium scale residential buildings (two-three-four storied dwellings) interiors design projects, and projects visualization (including modeling). Prerequisite: INTA 201.

INTA 202A Design Theories I
(1 crs)

The course is theoretical support to the course Interior Design Studio II and provides students with comprehensive knowledge required for studio projects implementations. Co-requisite: INTA 202.

INTA 220 Introduction to Computer Aided Drawing
(3 crs)

Provides training for basic CAD applications using the Windows operating system. Develops basic familiarities and proficiency with applications commonly encountered during professional training. Prerequisite: CMPS 100A

INTA 240 Interior Construction
(3 crs)

Basic interior detailing, millwork and cabinetry elements. These elements must be developed and coordinated to construct interior space. Detailing, technical drawings, specifications and scheduling are therefore integral to design development. Prerequisites: INTA 201, INTA 131

INTA 203 Interior Architecture Studio III
(5 crs)

Advanced concepts are used in the development and application of planning techniques and spatial concepts. Emphasis is on research and analysis of existing structures, contextual development of interior solutions, building constraints, accessibility standards and specialized product and materials specifications. The attention will be attracted to the space/form shaping and compositions within the limits of the built environment. Students will obtain skills in designing large-scale residential projects. Projects topics may include: large scale residences, blocks of flats, etc. Prerequisite: INTA 202

INTA 203A Design Theories II
(1 crs)

The course is theoretical support to the course Interior Design Studio III and provides students with comprehensive knowledge required for studio projects implementations. Co-requisite: INTA 203

INTA 221 Advanced Computer Aided Drawing
(3 crs)

Computer-aided architectural design focuses on a variety of CAD applications in order to show the similarities (basic principles of CAD) and the idiosyncrasies of the individual applications, as well as modeling of existing interior spaces utilizing selected CAD applications. Prerequisite: INTA 220
INTA 234 Modeling and Rendering (3 crs)
Rationalized, geometrical approach to the perception and description of form.
Selected examples of architectural form are first rigorously analyzed to re-
derive their constructional logic and then are “built” as detailed electronic
models. Students explore the potential of digital design technologies as
instruments to achieve vivid, authentic, holistic simulations of architectural
reality, appropriate to the testing of architectural ideas. Taught in a modified
studio format. Prerequisites: INTA 220

INTA 299 Practical Training (for Diploma students only) (0 crs)
Diploma students are required to undergo 8- weeks of professional training in
Interior Architecture with a qualified firm.

INTA 232 Visual Presentation Techniques (2 crs)
This course intends to emphasize the interior design visual communication as a
range of styles and techniques. The students will be provided with up-to-date
information of visual presentation techniques. Different phases of the design
are studied in terms of connection between design process and presentation.
Skills to be addressed: presentation of interior spaces in written and visual
language; presentation technique tools and means including modeling. Prere-
quisite: INTA 234.

INTA 235 Color and Light (2 crs)
The fundamentals, principles and art of light and color, as well as their visual
and physical effects in interior design are studied. The course explores light and
color as important elements in interior space through the study of related
perceptual and physical factors. It introduces relevant terminology to define
light and color as attributes of architectural and interior space: illumination
levels and temperatures, light sources, fixtures, materials, etc. Prerequisites:
GRDS 131, INTA 201

INTA 241 Materials in Interior Design (2 crs)
The course introduces to the students the large range of materials used in
interior architecture. The understanding of materials, furnishings and
accessories’ selection criteria and usage of them based on analyses of human
factors will be introduced. The importance of using local and ecological
materials in interiors as well as considering local market availability will be
studied. Skills to be addressed: material for interiors (including ecological),
materials selection criteria. Prerequisite: INTA 240

INTA 250 Environmental Control Systems in Interiors (3 crs)
Provides an integrated presentation of environmental control systems (lighting,
heating, ventilating, air conditioning, sanitary and acoustics) with special
attention to the needs of interior designers. Systems are presented as they
influence one another and as they constrain interior space planning and design.
Prerequisite: INTA 240.
INTA 304 Interior Architecture Studio IV (5 crs)
The course continues the content and purpose of INTA 203 with a special emphasis on planning techniques and volumetric concepts for the design of large-scale buildings’ interiors. Course components include research applied to selected client identities, design criteria for special population groups, building constraints and accessibility standards, modular design, project specifications and creative presentation methods. Projects topics may include: educational facilities, office buildings, shopping centers, etc. Prerequisite: INTA 203

INTA 304A Design Theories III (1 crs)
The course is theoretical support to the course Interior Design Studio IV and provides students with comprehensive knowledge required for implementation of studio projects. Co-requisite: INTA 304

INTA 342 Furniture Design (2 crs)
Exploration of the basic function and design of furniture as it relates to human factors, such as anthropometrics and ergonomics. The course provides a link between historical, theoretical and practical experience. It defines the elements of form, function and aesthetic by exploring experimental concepts and adopting alternative ways of thinking about the objects that surround us. Furniture models built to scale, or other presentation techniques, will be applied as needed to effectively support the evolution of new concepts. Prerequisite: INTA 240

INTA 305 Interior Architecture Advanced Studio V (5 crs)
A comprehensive design project management, integrating all aspects of design, theoretical, technological and representational, that allows students to perform various scales of investigation within one design problem. Students will obtain skills on working drawing’s production. Projects topics may include: governmental facilities, small structural changes and additions to buildings, headquarters, T.V. studios, etc. Prerequisite: INTA 304

INTA 305A Design Theories III (1 crs)
The course is theoretical support to the course Interior Design Studio IV and provides students with comprehensive knowledge required for implementation of studio projects. Co-requisite: INTA 305

INTA 335 Modern Practices in Interior Design (3 crs)
Focus on 19th and 20th century interior design theories and practices, exposing students to the various international schools of thought. Lectures and discussions focus on practitioners who have influenced contemporary practices worldwide. Prerequisite: INTA 151

INTA 344 Advanced Detailing (3 crs)
Development of a greater focus on holistic and sustainable approaches to design. Issues such as demand and supply of energy and water, and the generation of waste are covered. Principles of reduce, reuse and recycle are reiterated. Predominant emphasis is on practical strategies directly applicable in design. Material is presented as lectures and seminars, supplemented with
readings. Students should present a detailed project at the end of the course.

Prerequisite: INTA 240

INTA 390 Exhibition Design
(3 crs)
Essential research, planning and design tools to prepare and produce persuasive exhibition and environments such as product shows, museums and gallery interiors. The course explores topics of planning, lighting, stagecraft, narrative composition and human perception.
Prerequisites: INTA 344, INTA 305, INTA 235.

INTA 400 Advanced Professional Experience
(0 crs)
Bachelor students are required to undergo eight-week of on-the-job experience with an approved professional firm.
Prerequisite: INTA 305

INTA 406 Interior Architecture Advanced Studio VI
(5 crs)
This is a research directed design studio. Students pursue directed research in support of a design investigation. It focuses on topics related the aspects of architectural design such as history/theory, technology, representation, and heritage resource management,... etc. Solutions for the problems in interior architecture related to the high levels of complexity, with emphasis on reuse and adaptabilities are covered. Project topics may include: leisure facilities buildings and public spaces design.
Prerequisite: INTA 305.

INTA 406A Design Theories V
(1 crs)
The course is theoretical support to the course Interior Design Studio VI and provides students with comprehensive knowledge required for studio projects implementations.
Co-requisite: INTA 406

INTA 491 Final Year Project I
(3 crs)
Students are required to choose a design topic with the guidance of a supervisor and approval of faculty. Each student prepares an individual program for INTA 492, concluding with a formal and bound document.
Prerequisite: INTA 305

INTA 492 Final Year Project II
(5 crs)
Involves individual design resolution based upon the research findings initiated in INTA 491. The final project is developed under the guidance and advice of a faculty supervisor and is presented and defended in a formal public jury.
Prerequisite: INTA 491

INTA 445 Design Management
(2 crs)
Principles and practices of the economic and commercial aspects of architectural and design practice in a global economy. Microeconomics theory as it applies to private enterprise: basic business economics, planning and management. Attention is also given to the processes and skills required in establishing an independent architectural office.
Prerequisites: GRDS 340, INTA 406
Elective Courses

INTA 497 Special Topics in Interior Architecture (3 crs)
This independent course will cover a particular topic suggested by a faculty member in the program and conducted by a student having the required prerequisites. Prerequisite: Permission of the Instructor, and approval of the Department.

INTA 501 Identification and Evaluation of the Historic Built Environment (2 crs)
Methods, techniques and theories of researching, analyzing, documenting and evaluating the historic built environment. Includes architectural survey field methods, documentation techniques, archival research and approaches to evaluating historic significance. Prerequisite: INTA 151

INTA 502 Environmental Design Research (2 crs)
Advanced skills for identifying research questions and methods for accomplishing research in the environmental field. Design research project is planned. Emphasis on research process including problem identification, literature review, data collection and analysis. Prerequisite: INTA 250

INTA 504 Human Factors (2 crs)
The psychology of the client or user is a crucial factor influencing the design of the environment and the practice of interior architecture. Facts will be gathered about the interaction of the environment and user’s culture, gender, stage of life cycle and physical characteristics. Prerequisite: INTA 241
GRADUATE STUDIES
GRADUATE STUDIES

Degrees Offered

Dhofar University (DU) offers three graduate programs leading to a Master in Curriculum and Instruction: Teaching English Language, Master in Management (in Arabic), and Master of Education in Educational Administration (in Arabic).

Admission Requirements and Criteria

Students who are admitted to a graduate program are assigned to one of four categories:

Admission on Good Standing

Admission to the Master in Curriculum and Instruction: Teaching English Language is competitive and requires the candidate to:

1. Have a bachelor degree in English language, English literature, translation (English-Arabic), or Education (English emphasis) recognized by the Ministry of Higher Education; with a minimum average of 75/100 or equivalent.
2. Submit official transcripts for all undergraduate and/or graduate course work
3. Pass an English entrance exam that includes all English language skills, or present an official certificate of passing IELTS level 5.5 or higher, or a paper-based TOEFL score of 550 or higher, or equivalent.
4. Succeed in the admission interview conducted by the Graduate Studies Committee of the college
5. Admission to the Master in Management program is competitive and requires the candidate to:
 - Have a bachelor degree recognized by the Ministry of Higher Education in any field of study.
 - Submit official transcripts for all undergraduate and/or graduate course work
 - Complete a minimum of two years of experience in a managerial capacity, and
 - Succeed in the admission interview conducted by the Graduate Studies Committee of the college.
Provisional Admission

Students who meet all the criteria for admission on good standing but did not complete their bachelor degree requirements at the time of registration may be offered provisional admission. Change of this status into the status of 'admission on good standing' requires satisfaction of all requirements for admission within one semester after registration.

Admission on Probation

Students who do not meet the admission requirements for a particular graduate program may be admitted on probation. The conditions for removal of probation shall be determined by the admission committee for that program. However, under no circumstances shall a student be admitted as a regular graduate student or a graduate student on probation if he/she does not hold a bachelor degree or its equivalent from a university or college recognized by MoHE.

Special Admission

Students who have a bachelor degree and wish to enroll in one or more courses without working for a master degree may be admitted as special students not working for a degree. If they later wish to work for a degree, they must make a formal application and meet all the admission requirements set by DU.

Approval of MoHE

All admissions to the graduate programs are provisional subject to final approval by MoHE.

Application Procedure

To apply for admission to a graduate program, the applicant must submit the following:

- A completed application form
- Two letters of recommendation
- Official transcripts for all undergraduate and/or graduate course work
- IELTS score or equivalent for applicants for the Master in Curriculum and Instruction: Teaching English Language (*validity of these tests is limited to two years from the date of taking the exam*)
- Application fee of RO 50.

The student is required to undergo an interview with the Graduate Studies Committee of the relevant college.
Deadlines for Applications

Applications should reach the Admission and Registration Department early so that the student has enough time to prepare himself/herself to join the University. The last dates for accepting applications for admission are the end of August for admission to the fall semester and the end of January for admission to the spring semester. No students are admitted to the summer session. Students applying through the Higher Education Admission Center should adhere to the requirements indicated on their web site: http://www.heac.gov.om/

Graduate Study by Faculty and Staff

Full-time faculty and staff, with the approval of their supervisors and the Board of Graduate Programs, can take up to 6 credit hours of graduate courses per semester. Their admission to a graduate program is subject to the admission requirements of that program.

Admission of University Employees

The University encourages its employees who aspire to raise their level of education to work towards completing higher degrees of education by taking courses while working in the University. The University extends its financial assistance to spouses of eligible faculty members and staff who are not working, but would like to study at the University.

Academic Rules and Regulations

All academic rules and regulations for undergraduate studies apply to graduate studies, except where indicated otherwise.

Dropping and Adding Courses

After selecting a schedule, a student has the opportunity to make changes during the Drop and Add period, which is usually the first week of the semester, after which no changes are possible without the permission of the academic advisor and the approval of the Graduate Studies Committee of the college. A student should take care not to change all the courses he/she has previously chosen, but only one or two courses, if change is a must.

Academic Probation and Dismissal

A student working for a master degree may be placed on academic probation by the faculty graduate committee. A graduate student is placed on academic probation if he/she:
• Is admitted to graduate study on probation,
• Fails in any course taken for graduate credit, or
• Does not maintain a cumulative average of 75%.

The college graduate committee may discontinue a master student from graduate study if:

• Probation status is not removed within a period of two semesters in which the courses that are taken are for credit or exceeds two probations received during his/her study,
• The work of the student is deemed unsatisfactory by the department or program,
• The student fails the comprehensive examination twice, or fails the project defense twice,
• The student violates the laws of Oman or the student code of conduct including plagiarizing and cheating

Class Attendance and Absence Rules

Graduate students are expected to attend all classes, laboratories, or required field work. A student is responsible for the work that is done, and for any announcements that are made during his/her absence.

Students who, during a semester, miss more than one-fifth (20%) of the sessions of any course in the first fourteen weeks of the semester (six weeks in the case of the Summer term) will be dropped from the course.

Students who withdraw from a course are given a grade of “W”, but those who are forced to withdraw from a course will receive a grade of “WA”.

Credit Load

The minimum course load in any one semester is 3 credit hours and the maximum is 12 credit hours.

Assessment and Examinations

The relevant rules and regulations for undergraduate programs also apply to graduate programs.

Missing Exams

Graduate students who miss an announced examination or quiz or fail to submit a paper must present an excuse considered valid by the instructor of the course. The course instructor should then require the student to take a make-up examination or submit the missed paper within four weeks of the start of the next semester. Failure to do so will result in failing the course.
Failing Courses

If a graduate student fails a course, no re-examination is permitted. A student who fails a required course must repeat the course at the earliest opportunity. A student who fails an elective course may not have to repeat it as long as he/she can achieve the minimum cumulative average and the minimum number of credits required for graduation.

Repeating Courses

A student may repeat any course for which he/she received a grade of less than 75. A student who fails a course three times will be dropped from the program/major. When a course is repeated, the highest grade will be considered in the calculation of the cumulative average. All course grades will remain a part of the student’s permanent record.

Passing Grade

The minimum passing grade for a graduate course is 70%. However, students in graduate study are required to maintain a cumulative average of at least 75% in all courses taken for graduate credit. Results of projects are reported as Pass (P) or Fail (F).

Incomplete “I” Work

The relevant rules and regulations for undergraduate programs also apply to graduate programs.

Residence Requirements

To meet the minimum residence requirements for the master degree, a student must register full time and be in residence as a graduate student for at least two semesters, one semester and two summers, or four summers.

All requirements for the master degree must be completed within a period of four years after admission to graduate study. Students attending only summer sessions must complete all requirements within a period of six summers after admission to graduate study. Extension beyond the maximum allowed period of study requires the approval of the graduate studies committee of the college.

Other Academic Rules and Regulations

Rules and regulations about the grading system, failing courses, repeating courses, student discipline, plagiarism, smoking, dropping the semester, and withdrawal from the University are the same for undergraduate and graduate students. For details, read the relevant sections in this catalogue.
Graduate Student Supervision

During the first semester of graduate study, the department or program will assign an academic advisor to the student. The advisor will guide and help the student in planning a course of study. At a later date, each student will be assigned a project advisor who must be a full-time member of the faculty and who will serve as chairperson of the project committee. The project advisor should be of professorial rank.

The proposal of the master's project topic and the selection of the advisor and the members of the project committee should receive the approval of the college graduate committee and the Board of Graduate Programs.

Master’s Project

A research project based on results of original, independent research must be undertaken in partial fulfillment of the requirements for the master degree. The nature, scope, and content of the final project will be determined by the student in consultation with the project advisor. Students must follow the form and style described in the latest edition of K. L. Turabian, Manual for Writers of Term papers, Theses, and Dissertations (University of Chicago Press), or any other form specified by the department or program.

Copies of the project, bound, should be submitted by the student to the members of the project committee at least two weeks before the project defense. Two copies of the approved project should be deposited in the university library.

A student who is not able to finish his/her project within one semester, with the consent of his/her project advisor, can register up to two additional times. The student will pay for the three credits project on his/her first registration, but will not be billed for the two additional registration rounds. Normally students are only allowed a maximum of three registrations, taking into consideration that the master degree should be completed within four years.

Tuition Fees for Graduate Programs

Tuitions fees are as follows:

- 110 Omani Riyals per credit hour for the Master of Education in Curriculum and Instruction: Teaching English Language:
- 140 Omani Riyals per credit hour for the Master in Management: Fees are paid in full every semester before classes begin.
- Late payments can be settled during the first week of the semester with a charge of RO 50 as a late payment fee for graduate students, while undergraduate students pay RO 30. Any student who does not meet his/her financial obligations by the end of the first week of the semester will not be allowed to attend classes during that semester.
 Fees are paid in full every semester before classes begin. Late payments can be settled during the first week of the semester with a charge of 50 OR as a late payment fee. Any student who does not meet his/her financial obligations by the end of the first week of the semester will not be allowed to attend classes during that semester.

Tuition Refund

Make the following in bold and add underline:

- Full tuition will be refunded only to students who withdraw from the semester before the end of the first week of classes.
- 50% of tuition fees will be refunded to students who withdraw before the end of the second week of classes.
- NO REFUND will be made to students who withdraw from the semester from the beginning of the third week of classes and onward.

The above fees do not include books, transportation, and housing expenses.
Master in Curriculum and Instruction: Teaching English Language

Objectives

The Master in Curriculum and Instruction: Teaching English Language at Dhofar University is a two-year program that aims to prepare effective teachers and practitioners according to international standards and contemporary thought in the field. In addition, the program aims to equip its graduates with the requisite skills and competencies for conducting action research as well as utilizing modern technology in their teaching and professional practice.

Graduates of the program will understand the theory and practice of language education pedagogy, curriculum planning and delivery, classroom supervision, materials and techniques, and student learning and assessment in language education.

Overview

The program of study consists of a series of specialization courses in language acquisition, second language teaching and learning, assessment and evaluation, and designing and producing educational materials. In addition, students are required to complete core courses in educational psychology, research design and methodology, and the foundations of language education. The program is composed of the following components:

Course Work

Students will follow the program of study that is described below under the supervision of their academic advisors. That program is made of a set of nine required courses and another set of elective courses from which the students should select two.

Field Experience

Students will be required to carry out field investigations, conduct interviews and have opportunities to discuss and apply the concepts covered during the course work. There are practical components in most courses which should take place in schools to get first hand experiences about designing and implementing lesson plans to teach the various skills of listening, speaking, reading, and writing as well as language rules and mechanics, as well as communicative English use.

Projects/Theses

The students should make field observations, collect, and analyze data from the field. The nature, scope, and content of the final project/thesis will be determined by the student in consultation with the faculty advisor. The
project/thesis work should be presented in the form of a comprehensive report that follows international standards in reporting scientific research in human sciences.

Admission Requirements

Admission to the Master in Curriculum and Instruction: Teaching English Language is competitive and requires the candidate to:

- Have a bachelor degree in English language, English literature, translation (English-Arabic), or Education (English emphasis) recognized by the Ministry of Higher Education; with a minimum average of 75/100 or equivalent.
- Submit official transcripts for all undergraduate and/or graduate coursework.
- Pass an English entrance exam that includes all English language skills, or present an official certificate of passing IELTS level 6 or higher, or a paper-based TOEFL score of 550 or higher, or equivalent, and
- Succeed in the admission interview conducted by the Graduate Studies Committee of the college.

Course Load

It is preferred that students would follow the specified study plan, which distributes the courses on four semesters. However, students may select to take a reduced load of no less than six credits per semester if they are employed while studying. The maximum course load is 12 credits per semester.

Graduation Requirements

To graduate with a Master of Education in Curriculum and Instruction: Teaching English Language, a student must:

- Complete successfully the specified program of study with a minimum CGPA of 75%.
- Present official evidence of passing IELTS level 6.5, or TOEFL with a minimum score of 600, or equivalent.
- Complete a Master’s project/thesis

Program

Required Courses:

This set consists of the following 9 courses encompassing 27 credit hours:

- EDUC 502: Advanced Topics in General Instructional Methods of Teaching
- EDUC 506: Instructional Methods in Teaching ESL/EFL
• EDUC 508: Computer Assisted Language Learning
• EDUC 585: Assessment and Evaluation in Teaching ESL/EFL
• EDUC 590: Research Methods in Education
• EDUC 605: Advanced Topics in Instructional Strategies in ESL/EFL
• EDUC 625: Curricula and Pedagogical Issues in Teaching ESL/EFL
• EDUC 690: Project/thesis (3 or 6 credit hours)

Elective Courses:

Two or three courses encompassing 6 or 9 credit hours are chosen from the following list (nine for project choice and six for thesis choice):

• EDUC 500: Learning and Developmental Psychology
• EDUC 504: Advanced Topics in Education Systems in Oman and the GCC Countries
• EDUC 505: Foundations of Education
• EDUC 530: Cross-Cultural Communication
• EDUC 550: Guidance and Counseling
• EDUC 557: Advanced Study of Educational Organization and Administration
• EDUC 570: Theories of Intelligence and Learning Styles
• EDUC 573: Instructional Design and Applications
• EDUC 587: Standardized Measures for English Language Skills
• EDUC 611: Models of Second Language Acquisition
• EDUC 615: Program Curriculum, Materials, and Syllabus Design
• EDUC 630: Designing Digital Media for Educational Applications
• EDUC 510: Statistical Analysis Methods for Research in Humanities
Study Plan

Year I

Semester 1 (Fall)
12 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 502</td>
<td>Advanced Topics in General Instructional Methods of Teaching</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 590</td>
<td>Research Methods in Education</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 506</td>
<td>Instructional Methods in teaching ESL/EFL</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective course</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Semester 2 (Spring)
12 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 585</td>
<td>Assessment and Evaluation in Teaching ESL/EFL</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 508</td>
<td>Computer Assisted Language Learning</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 605</td>
<td>Advanced Topics in Instructional Strategies in ESL/EFL</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Year II

Semester 3 (Fall)
6 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 625</td>
<td>Curricula and Pedagogical Issues in Teaching ESL/EFL</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>(for students selecting the project)</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 4 (Spring)
6 Credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 690</td>
<td>Project/Thesis Implementation</td>
<td>(3 credits for project or 6 credits for thesis)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>33</td>
</tr>
</tbody>
</table>
Course Descriptions

EDUC 500 Learning and Developmental Psychology (3 credits)
The essential concepts of the theories which explain learning by humans such as behaviorism, cognitive learning, observational learning (modeling), and metacognition. The general concept of developmental psychology with focus on the importance and relation to education. An introduction to individual differences among learners and learning styles.

EDUC 502 Advanced Topics in General Methods of Teaching (3 credits)
Advanced study of cognitive learning and models of teaching, advantages of cognitive models over behaviorist models, instructional planning, teaching strategies, classroom management, and evaluation procedures. Detailed discussion of essential thinking skills and the teaching of thinking with emphasis on conceptual understanding in teaching. Teaching/learning models such as: Social Interaction Model, Inductive Model, Interactive Model, Problem-based Learning Model, Cooperative Learning, differences and characteristics of Direct and Indirect models of instruction will be covered.

EDUC 504 Advanced Topics in Education Systems in Oman and the GCC Countries (3 credits)
Study and analysis of the educational systems of the Sultanate of Oman and the GCC Countries along with comparisons with relevant international systems. Students’ field trips to educational institutions will be organized and reports will be discussed in class. Course may be offered in Arabic.

EDUC 505 Foundations of Education (3 credits)
Detailed study of the history and development of education and pioneers in education. Selected educators from Greece, Italy, China, Egypt, India, and the Islamic world will be studied and their theories will be analyzed with focus on their effect on the modern education.

EDUC 506 Instructional Methods in Teaching ESL/EFL (3 credits)
A survey of the theoretical principles and techniques of various methods of Teaching English Language. Focus is on linking theory to practice through the preparation and implementation of instructional units and lesson plans both in simulated and actual classroom setting. The course includes practicum field experience of about 30 classroom sessions in schools.

EDUC 508 Computer Assisted Language Learning (3 credits)
Study of the state-of-the-art of information and communication technologies (ICT) applications in enhancing language teaching and learning with focus on English language applications. Students will develop ESL/EFL teaching materials and conduct classroom activities using ICT with special attention to the use of the internet.
EDUC 510 Statistical Analysis Methods for Research in Humanities (3 credits)
Coverage of data types, the statistical analysis methods that are commonly used in education such as descriptive statistics, tabulation methods, measures of central tendencies, correlation, and basic inferential statistics. Students should practice data collection and perform statistical analysis for the collected data, and present the results to the class.

EDUC 530 Cross-Cultural Communication (3 credits)
Study of social, ethical and cultural effects on oral and written communication across cultures. Topics include body language, stereotypes, titles and respect, turn taking, narrative structuring, intonation, request, disagreement and criticism and their educational implications. Case studies of different speech communities will be discussed and compared with the Omani culture.

EDUC 550 Guidance and Counseling (3 credits)
A study of the role of college and high school counselors in guiding and helping students academically and in all other areas affecting their academic and social life. Prerequisite: EDUC 500.

EDUC 557 Advanced Study of Educational Organization and Administration (3 credits)
Study of the administrative and organizational theory and its application to the operation of educational organizations. The role, functions, and responsibilities of the educational administrator will be covered.

EDUC 570 Theories of Intelligence and Learning Styles (3 credits)
This applications-focused course will be based on theories of intelligence, including those of Howard Gardner, Daniel Goleman, and other classroom based approaches for understanding intelligence from multiple perspectives.

The course will also help students to distinguish between knowledge domains (such Bloom’s Taxonomy, as well as others that have been introduced in the last 20 years), learning styles, and concepts of intelligence, with an emphasis on how such distinctions can serve in the development and implementation of student-centered classroom activities.

EDUC 573 Instructional Design and Applications (3 credits)
This course focuses on the application of instructional design principles to the development of instruction. Topics include issues, trends, foundations, instructional design stages, and technology. Students are expected to produce original samples to demonstrate the implementation of instructional design principles.
EDUC 585 Assessment and Evaluation in Teaching ESL/EFL (3 credits)
Principles and procedures of assessment. Focus is on evaluating learning, and behavior changes among learners, observation techniques, and performance measures; alignment of assessment and instruction; norm- and criterion referenced assessment; standardized tests, current issues and controversies. Significant attention to applications in language skills and communication. The course includes practicum field experience of about 30 classroom sessions in schools.

EDUC 587 Standardized Measures for English Language Skills (3 credits)
This course covers the history and application of standardized measures that are used to evaluate English language skills internationally such as TOEFL and IELTS with their variations. Students will have hands-on experience with those tests, analyze their components, discuss cultural significance of those tests, and produce reports about them with focus on the relation between cultural and linguistic issues.

EDUC 590 Research Methods in Education (3 credits)
Coverage of the steps needed in planning for a research in education. The types of research design: quantitative versus qualitative research. Sampling techniques. Data collection methods. Designing data collection and measurement tools. Critical reading of empirical research in the varied areas of education. Students should produce samples of research designs for educational use and present them to the class.

EDUC 605 Advanced Topics in Instructional Strategies in ESL/EFL (3 credits)
A study and application of the modern communicative approaches to the teaching of grammar, speaking, listening, reading, writing, culture, and testing. Students prepare instructional materials and complete a series of lesson plans and apply them to a teaching context. The course include practicum field experience of about 30 classroom sessions in schools. Pre-requisite: EDUC 507.

EDUC 611 Models of Second Language Acquisition (3 credits)
This course introduces students to the study of second language acquisition and provides them with training in the collection, analysis, and interpretation of representative learner language data in second language contexts. Course topics include universals of language acquisition, major theoretical models of second language acquisition, and individual differences in second language acquisition. Implications for language teaching are also addressed.

EDUC 615 Program Curriculum, Materials, and Syllabus Design (3 credits)
Basic competencies in curriculum planning, material adaptation, course development, task design, and lesson planning. Participants will design sample programs, instructional units, determine objectives, develop materials, and plan lessons and assessment tools.
EDUC 625 Curricular and Pedagogical Issues in Teaching ESL/EFL (3 credits)
Critical exploration of current issues in Teaching English Language curricula and pedagogy. Students explore, conceptualize, and formulate informed positions regarding current issues in curriculum design and implementation, teaching and assessment of learning, psycholinguistics, sociolinguistics, and language and communication more generally.

EDUC 630 Designing Digital Media for Educational Applications (3 credits)
This course focuses on the study and application of instructional design principles to the development of multimedia materials. Students are expected to design and develop a multimedia project using the discussed techniques.

EDUC 690 Project/Thesis Implementation (6 or 3 credits)
Students implement the design of their final projects that were developed in EDUC 590. They should demonstrate abilities to conduct and report research about teaching English language in an Omani educational institution. The completed project/thesis should be presented to a special panel of experts. The project work should be presented in a standard research report format that includes sections about definition of the problem, literature review, research design, study implementation, results, data analysis, discussion, and conclusion. Pre-requisite: All core and elective courses.
Master of Education in Educational Administration

Objectives

The Master in Educational Administration at Dhofar University is a two-year program that aims to prepare effective educational administrators and practitioners according to international standards and contemporary thought in the field. In addition, the program aims to equip its graduates with the requisite skills and competencies for conducting action research as well as utilizing modern technology in their administrational and professional practice.

Graduates of the program will understand the theory and practice of educational administration aspects such as plan.

Graduates of the program will be able to manage daily activities and oversee a variety of educational institutions, including, schools and colleges and universities. They set educational standards and goals and set up procedures and policies to accomplish them. They oversee teachers, librarians, counselors, coaches, managers and support staff.

Overview

The program of study consists of a series of specialization courses in educational administration to qualify the graduates to create an educational programs, train and inspire teachers and staff, monitor the overall school students’ achievement progress, prepare school, institutional budgets and manage records, career counseling and other student services.

Course Work

Students will follow the program of study that is described below under the supervision of their academic advisors. That program is made of a set of seven compulsory courses and another set of elective courses from which the students should select two (In the case of thesis) or 3 credit hours in the case of project.

Professional Portfolio

All through the program the students will collect the materials that were developed during the course work and that attest to the student's convictions, accomplishments, and experiences. Students will also identify personal strengths, limitations, and develop goals for their on-going professional development.
Learning Outcomes

The Master in Educational Administration program aims to produce graduates who:

- Are well prepared in educational thought, scientific research methodology, decision making, dealing with all educational issues.
- Understand the various types of supervision, planning, educational economics, professional development and educational administration.

Admission Requirements

Admission to the Master of Education in Educational Administration program is competitive and requires the candidate to:

1. Have a bachelor degree recognized by the Ministry of Higher Education in any field of study.
2. Success in the admission interview conducted by the University.

Graduation Requirements

To graduate with a Masters degree in Educational Administration, a student must:

- Satisfactorily complete 33 credits with a cumulative average of no less than 75%. The passing grade in a graduate course is 70%.
- Complete a master’s project/thesis

Program Overview

The program consists of 33 credit hours distributed as follows:

- 21 credit hours of required core courses
- 6 credit hours of elective courses for the thesis choice or 9 for the project stream.
- 3 credit hours of research project -or 6 credit hours for the thesis stream.

Required Courses

- EDUC 591 RESEARCH METHODS IN EDUCATION
- EDUC 670 EDUCATIONAL ADMINISTRATION
- EDUC 671 EDUCATIONAL PLANNING
- EDUC 672 EDUCATIONAL SUPERVISION
- EDUC 673 MODERN TECH IN EDUCATION
- EDUC 674 READINGS IN ED. ADM IN ENGLISH
- EDUC 675 ECONOMICS OF ED.
- EDUC 695 THESIS (6CREDITS) OR EDUC 692 PROJECT (3 CREDITS)

Elective Courses
Study Plan

Year I

Semester 1 (Fall)
12 credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course title</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 670</td>
<td>Educational Administration</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 671</td>
<td>Educational planning</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 591</td>
<td>Research Methods and Statistics in Education</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective course</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Semester 2 (Spring)
12 credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Course title</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 672</td>
<td>Educational Supervision</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 673</td>
<td>Technology of Education</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 675</td>
<td>Economics of Education</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective Course</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Year II

Semester 3 (Fall)
3 credits hours (thesis stream) 6 credit hours (project stream)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course title</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 674</td>
<td>Reading Educational Administration in English</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective course (in case project track)</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Code</th>
<th>Course title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 695</td>
<td>Thesis (6 credit hours) Project (3 credit hours)</td>
</tr>
<tr>
<td>OR</td>
<td>EDUC 692</td>
</tr>
</tbody>
</table>
Master in Management

Objectives

The Master in Management program is designed to meet the educational needs of working professionals who wish to assume higher levels of responsibility within their organizations. The program serves junior and mid-level business professionals, as well as managers, engineers, and other professionals who desire additional knowledge and skill to manage organizational resources more effectively. The language of instruction is Arabic.

Program Highlights

- High-quality program benchmarked against the best international practices in the generation, dissemination, and application of specialized management knowledge.
- Faculty who are internationally known researchers, sought after consultants, and dedicated teachers.
- The in-class experience includes numerous simulations of management decision-making scenarios, extensive interaction between the faculty and the students, personal communication and presentation skills enhancement, and team exercises.
- Modern delivery methods which are student-driven, team-based, and group oriented.
- Comprehensive and challenging curriculum that blends theory and practice.
- Scheduling flexibility; students proceed through the program at their own pace.

Learning Outcomes

The Master in Management program aims to produce graduates who:

- Are well versed in management thought, scientific research methodology, foundations of organization behavior, decision making, change management, strategic management, dealing with internal and external customers, etc.
- Understand the various stages of management development, the various schools of thought, and the future prospects in light of interrelated global and local developments

Admission Requirements

Admission to the Master in Management program is competitive and requires the candidate to:

1. Have a bachelor degree recognized by the Ministry of Higher Education in any field of study.
2. Complete a minimum of two years of experience in a managerial capacity
Success in the admission interview conducted by the University.

Graduation Requirements

To graduate with a Masters degree in Management, a student must:

- Satisfactorily complete 42 credits with a cumulative average of no less than 75%. The passing grade in a graduate course is 70%.
- Complete a master’s project
- Pass a comprehensive examination that includes a performance component and defend successfully the work on the master’s project in front of a panel of experts.

Program Overview

The program consists of 42 credit hours distributed as follows:

- 27 credit hours of required cores courses
- 12 credit hours of elective courses
- 3 credit hours of research project

Required Courses

- MNGT 400 Modern Management Thought
- MNGT 405 Advanced Technologies in Management & Organization
- MNGT 410 Finance for the Non Financial Managers
- MNGT 428 Research Methods in Management
- MNGT 412 Managerial Economics
- MNGT 415 Strategic Managerial Accounting
- MNGT 418 Change Management
- MNGT 420 Strategic Management
- MNGT 425 Organization Behavior
- MNGT 470 Research Project

Elective Courses

- MNGT 430 Human Resource Management
- MNGT 432 Job Classification & Grading
- MNGT 435 Compensation & Salary Management
- MNGT 437 Management of Performance Appraisal
- MNGT 440 Total Quality Management
- MNGT 442 Standards & Procedures of Quality Management in the Service Sector
- MNGT 445 Customers Relations Management
- MNGT 447 TQM Applications and Six Sigma Systems
- MNGT 450 Management & Organization in the Public Sector
- MNGT 455 Personnel Management in the Public Sector
- MNGT 457 Service Management in the Public Sector
- MNGT 460 Performance Appraisal Systems in the Public Sector

For course descriptions, see the Arabic Catalogue.
Master of Science in Information Technology (MS-IT)

Program Objectives

The primary aim of the program is to allow IT professionals an opportunity for professional upgrading or an extension of their qualifications and experience in order to develop to their full intellectual potential. It is a professional degree program, designed to provide candidates with appropriate practical understanding, life-long learning skills and knowledge for IT use, research, development and management and turn into competent and morally responsible professional individual to better serve the community. Having this knowledge, skills and practical understanding, graduates will be able to assume careers in research, development, operations and management of medium and large organizations, in all sectors, where IT is vital.

Learning Outcomes

The MS-IT program is designed to prepare professionals and recent graduates for work in the IT sector at the highest levels in today’s thoroughly globalised and networked environment. It will provide the individual with the knowledge, understanding and skills to deal effectively with advanced applied and research issues in IT. Graduates of the course will possess a solid foundation that will allow them to maintain their skills as their specialized fields evolve.

Upon completion of the MS-IT program, graduates will be able to:

- Apply cutting edge technologies to real life business problems.
- Demonstrate teamwork abilities and outcome oriented deliverables.
- Explain and apply the core aspects of IT principles and tools, and manage their implementation in a business context.
- Understand and facilitate the strategic and operational aspects of business and technology applications.
- Manage complex IT projects with consideration of the human factors, business requirements, environmental aspects, risk management processes, and operational and policy implications.
- Understand the strengths and limitations of current technologies and apply them intelligently to meet the needs of each application.
- Apply their practical skills in IT projects developed for real world applications.
- Utilize high level interpersonal skills to negotiate and communicate effectively with both technical and non-technical stakeholders verbally and in writing.
• Possess advanced knowledge of the state of the art in research in specialist areas related to Information Technology.

• Have an understanding of research methodologies at a level that enables students to conduct research in the areas of information technology.

Graduate Attributes

• Practice life-long, self-dependant learning skills.

• Demonstrate the ability to act independently and creatively in analyzing problems.

• Demonstrate their knowledge and skills in the investigation of problems and development of solutions.

• Be able to make sound judgments on complex issues and communicate their conclusions effectively to specialist and non-specialist audiences.

• Own the responsibility for their own learning and future professional development.

• Be able to collaboratively work in identifying issues and resolving problems.

• Develop the culture of doing appropriate literature review before the start of any research project.

Teaching and Learning Strategies

The teaching and learning strategies designed to satisfy the graduate attributes of the program are:

• Students are expected to participate actively in class discussions and out-of-class assignments (i.e. via Forum on Moodle), and to contribute to the process of constructing knowledge.

• Students are expected to do independent reading, especially before the class period. They are encouraged to apply the SQ3R (Survey, Question, Read, Recite, Review) method and to reflect on the readings by writing a short report of what they have read.

• Students will be required to analyze problems or write reports, and present their findings/work in class, workshops or seminars.
• Students are encouraged to visit instructors during office hours to ask questions, give feedback, or just chat about ideas related to the class.

• Faculty members are expected to provide real-life examples and application areas of the delivered concepts. Students are then provided problem sets the solution to which require additional reading and analytical skills.

• Students are expected to be engaged in individual and group projects whereby each student will be expected to contribute his own findings about a specific problem.

• Faculty members are expected to create opportunities in classrooms for students to demonstrate problem solving abilities through assignments, home works and projects.

• Students are expected to be engaged in appropriate literature review prior to commencement of any project assignment.

Admission Criteria

Applicants must have completed a Bachelors degree in Computer Science, IT or a related discipline from a university recognized by the Ministry of Higher Education in Oman. Students with other majors are also eligible for admission subject to successful completion of a number of pre-requisite courses that will be determined by the department.

The student must have achieved a score not less than 75%, which is equivalent to a GPA of 2.4 out of 4.0 or a cumulative grade letter of C+. Graduates from other majors will be expected to have successfully completed introductory courses in the areas shown below, with a grade not less than B in each course. If not, they will have to complete at least 12 credit hours (4 courses), before they can be officially enrolled in the program. The exact entry requirements can only be determined after the qualifications of the student are observed and analyzed.

Graduates from other majors will be expected to have successfully completed introductory courses in the following areas:

• Data Structures
• Databases
• Networks and Security
• Programming
• Software Engineering

Program Curriculum Plan

The MS-IT program is offered in two tracks as follows:

1. Thesis option
2. Course work option

The thesis option consists of course work and a thesis, whereas, the course work option comprises of course work and a research project.

The University does not follow the notion of yearly education. The students are awarded the degrees on the basis of completion 36 credit hours with an overall GPA not less than 3.00 out of 4.00. However, the University has put forward a regulation that a student must complete minimum of 18 credit hours to be eligible for Master’s thesis registration process.

The duration of the program is considered to be 24 months for full-time students. However, the students can extend the period of study up to a maximum of 4 years in order to acquire 36 credits. Additionally a residency requirement of no less than 2 years and a maximum residency of 4 are also embedded in the regulations.

The courses are designed in accordance with the American system of higher education. A graduate course is worth 3 credit hours. Such a class would generally meet for 3 contact hours per week over a 15-week semester, totaling roughly 45 hours of "contact" with the instructor(s) per course. Such classes may meet 3x1 hour weekly (for example Sundays, Tuesdays and Thursdays from 0900-1000), or 2x1.5 hours weekly (for example Mondays and Wednesdays from 0800-0930).

The contact hours of a typical 3 credit course would comprise of lectures and/or class discussion and/or lab works/applications or other options. In addition to lectures, one or several textbooks would be required reading, and there would often be recommended supplementary reading as well. The students are expected to do 3-2 hours of self study referring the reference materials available in the library or online resources to meet the learning outcomes of the course. Students shall also be expected to complete a number of homework assignments including problem solving, programming, course projects, course papers and theoretical issues. They are required to perform these tasks at their own time. The university is equipped with latest computers and software tools but many students may work from home. As a general rule, students are expected to work at least 3 hours of homework against each contact hour in the class, however, detailed work-load guidelines shall be provided in each course outline.
There are two exit routes from this program which are:

1. successful completion of the program and award of Master degree or
2. unsuccessful completion of the program and award of transcript showing a set of completed/attempted courses.

The breakdown of 36 credits is given below for both Thesis and Course Work options:

Thesis Option

- 15 credits of core courses
- 15 credits of technical electives, of which at least 6 credits must be chosen from level 600 or higher courses
- 6 credits of Master's Thesis

Important

- A student, who successfully completes 18 credits, shall be considered for the Master's Thesis option. The final decision shall be made by the department based on the student’s grades and his/her ability to do research.
- A student shall be given up to three semesters to finish his/her thesis work. In case the student does not finish the thesis work on time, he/she must re-register for the thesis course CMPS 690.

Course Work Option

- 15 credits of core courses
- 18 credits of technical electives, of which at least 12 credits must be chosen from level 600 or higher courses.
- 3 credits of research project

List of Core Courses

- CMPS 500 Advanced Software Engineering
- CMPS 510 Computer Networks and Security
- CMPS 520 Research Methodology
- CMPS 530 Advanced Database Systems
- CMPS 540 Information Technology Project Management

List of Elective Courses

- CMPS 550 Advanced Artificial Intelligence
- CMPS 551 Intelligent Systems
- CMPS 552 Information Technology Entrepreneurship
- CMPS 553 Mobile Computing
- CMPS 554 Advance Programming Languages and Techniques
- CMPS 555 Strategic Information Systems Planning
- CMPS 556 Analysis and Design of Algorithms
- CMPS 557 Security in Networks
- CMPS 558 Advanced Web Development
- CMPS 559 Multimedia Applications
- CMPS 560 Object Oriented Software Development
- CMPS 600 Emerging Trends in Information Technology
- CMPS 601 Research Topics in Information Technology
- CMPS 602 Information Technology Auditing and Assurance
- CMPS 603 Knowledge Management
- CMPS 604 Research Project

Grading System

The grading system for the MS-IT program is given below:

<table>
<thead>
<tr>
<th>Numerical Grade</th>
<th>Grade Type</th>
<th>Equivalent Letter Grade</th>
<th>Equivalent Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>Outstanding</td>
<td>A</td>
<td>4</td>
</tr>
<tr>
<td>85-89</td>
<td>Excellent</td>
<td>B+</td>
<td>3.5</td>
</tr>
<tr>
<td>80-84</td>
<td>Very Good</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>75-79</td>
<td>Good</td>
<td>C+</td>
<td>2.5</td>
</tr>
<tr>
<td>70-74</td>
<td>Fair</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>60-69</td>
<td>Weak</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>Below 60</td>
<td>Fail</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Incomplete</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pass</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In progress</td>
<td>PR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Withdrew</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No Grade Reported</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Study Plan

Year I

Semester 1 (Fall) 09 Credits (Both Course Work and Thesis Options)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPS 500</td>
<td>Advanced Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 510</td>
<td>Computer Networks and Security</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 520</td>
<td>Research Methodology</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2 (Spring) 09 Credits (Both Course Work and Thesis Options)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPS 530</td>
<td>Advanced Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 540</td>
<td>Information Technology Project</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 5XX</td>
<td>Elective*</td>
<td>3</td>
</tr>
</tbody>
</table>

*Elective courses ranging from CMPS 550 to CMPS 599

Year II

Semester 3 (Fall) 09 Credits (Both Course Work and Thesis Options)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPS 5XX</td>
<td>Elective*</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 6XX</td>
<td>Elective**</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 6XX</td>
<td>Elective**</td>
<td>3</td>
</tr>
</tbody>
</table>

*Elective course ranging from CMPS 550 to CMPS 599

**Elective courses ranging from CMPS 600 to CMPS 689
Semester 4 is offered into two different options: Thesis or Course Work
(choose any one option)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPS 6XX</td>
<td>Elective**</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 690</td>
<td>Master Thesis***</td>
<td>6</td>
</tr>
</tbody>
</table>

*** Subject to successful completion of 18 credit hours and CMPS 520 (Research Methodology) if deemed necessary by the advisor, followed by approval of the department.

Completion of the “Master of Science in Information Technology (MS-IT)” program - Total Credits 36

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPS 604</td>
<td>Research Project</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 6XX</td>
<td>Elective**</td>
<td>3</td>
</tr>
<tr>
<td>CMPS 6XX</td>
<td>Elective**</td>
<td>3</td>
</tr>
</tbody>
</table>

**Elective courses ranging from CMPS 600 to CMPS 689

Completion of the “Master of Science in Information Technology (MS-IT)” program - Total Credits 36

Course Descriptions

Core courses

CMPS 500 Advanced Software Engineering (3 credits)
This course focuses on latest trends in architecture, process, framework, methodologies and tools used in software development. It emphasizes software metrics, quality, management, reliability, testing, integration, verification, validation, deployment, testing and maintenance.

CMPS 510 Computer Networks and Security (3 credits)
The course covers theory and practice of computer security, focusing in particular on the security aspects of the web and Internet. It surveys cryptographic tools used to provide security, such as shared key encryption (DES, 3DES, RC-4/5/6, etc.); public key encryption, key exchange, and digital signature (Diffie-Hellman, RSA, DSS, etc.). It then reviews how these tools are utilized in the internet protocols and applications such as SSL/TLS, IPSEC, Kerberos, PGP, S/MIME, SET, and others (including wireless). System security issues, such as viruses, intrusion, and firewalls, will also be covered.

CMPS 520 Research Methodology (3 credits)
This course is designed to support postgraduate students in developing their research project and to assist them in defining their mode of enquiry. The course has been constructed to guide students through a range of issues and considerations which should inform their general approach to research. It will
give students a general introduction to postgraduate research, its methodologies, its challenges and its organization, including in creative practice. Students will be introduced to a range of research tools and will be equipped to plan and organize their research, as well as to communicate their findings.

CMPS 530 Advanced Database Systems (3 credits)
This course covers design principles and techniques for medium to very large databases. Topics include user database issues, concurrency control and recovery, query processing and optimization, transaction processing, object-relational databases, and data mining. Design and implementation issues related to multi-database systems are also discussed.

CMPS 540 Information Technology Project Management (3 credits)
This course is designed to prepare students with project management skills needed to better manage IT projects. It covers detailed topics of the basic concepts of IT project management, including initiating, planning, controlling, executing, and closing projects. The course also shows how IT projects should be managed, from inception to post implementation review. The students who take this course will likely improve their management skills and abilities to define the project scope, create a workable project plan, and manage within the budget and schedule. *Prerequisite or Co-requisite: CMPS 500*

Elective courses

CMPS 550 Advanced Artificial Intelligence (3 credits)
In this course we will start with the question like "What is intelligence", "What is not intelligent", "Can a machine mimic intelligent behavior". We will look at the history and philosophy behind different notions of intelligence developed so far. We will have an overview of streams of development leading to modern intelligent systems, knowledge based tools, expert systems, fuzzy logic, probabilistic methods, neural networks, and genetic algorithms.

CMPS 551 Intelligent Systems (3 credits)
In this course we will study the design of computer systems that exhibit traits we normally associate with intelligence in human behavior, such as the ability to search and solve problems, the ability to understand natural language or to reason about the visual environment.

CMPS 552 Information Technology Entrepreneurship (3 credits)
This course is designed to introduce students to the nature and different forms of IT entrepreneurship and entrepreneurial behavior. Taking an opportunity-based approach to entrepreneurship, the course covers the key areas of entrepreneurial process, including entrepreneurial motivation, new venture creation process, opportunity identification and development, environmental analysis, business planning, leadership and management of an enterprise, and sustainability and growth of an IT business.

CMPS 553 Mobile Computing (3 credits)
This course discusses a balance mixed of topics related to mobile computing. Topics include mobile and wireless networking, operating systems and middleware, reliable distributed file systems, location discovery, wireless routing, and location management and prediction.

Prerequisite: CMPS510

CMPS 554 Advanced Programming Languages and Techniques (3 credits)
This course focuses on comparative study of programming languages from both theoretical and applied viewpoints. Typical issues include syntax and semantics, scope and binding times, storage allocation, parameter-passing techniques, control structures, run-time representation of programs and data. Detailed examples are from the imperative, functional, parallel, object-oriented and logical programming paradigms.

CMPS 555 Strategic Information Systems Planning (3 credits)
The course builds on both the Management and Information Systems skills. It ties the study of management and computing together at the top level and focuses on issues that bring competitive advantage into modern and partially automated organizations.

CMPS 556 Analysis and Design of Algorithms (3 credits)
The course will cover some of the core topics already studied in DU’s undergraduate course on algorithms (or in some equivalent course at another university), but with more details and rigor. In addition, we will present a selection of advanced topics, mainly the theory of NP-completeness, the theory of fixed-parameter tractability, approximation algorithms, and algorithms for parallel computers.

CMPS 557 Security in Networks (3 credits)
This course focuses on network security infrastructure technologies such as firewalls, Virtual Private Networks (VPN), Intrusion Detection and Prevention Systems (IDS/IPS), vulnerability assessment tools, as well as overall security infrastructure engineering and design.

Prerequisite: CMPS 510

CMPS 558 Advanced Web Development (3 credits)
This course focuses on the design, development and implementation of Internet technologies. Students will design, build and place online a web site for a live client. Web server implementation, administration and ongoing support will also be discussed.

CMPS 559 Multimedia Applications (3 credits)
This course provides students with the opportunity to train for a career in Multimedia and Web Development sector. It will focus on 3D animation, Digital Video processing, Game Design and Web Development.

CMPS 560 Object Oriented Software Development (3 credits)
This course provides broad and coherent coverage of object-oriented technology, teaching object oriented design and development to the students.
The course focuses on design and programming through the use of UML, design patterns and frameworks. Aspect and Extreme Programming, Reuse, and Refactoring of components in object-oriented technology will be the highlights of this course. The Class libraries and illustration of incremental software development is also covered.

Prerequisite: CMPS 500

CMPS 600 Emerging Trends in Information Technology (3 credits)
This course focuses on new and emerging applications in information technology. Topics may include but not limited to such as platform architectures, social platforms, cloud computing, data privacy and security, user experience, and analytics. In addition it focuses on the new trends and disruptive technologies in IT. Emphasis will be given to the way technologies create a competitive edge and generate business value. There will be a broad range of views presented by different guest speakers, including entrepreneurs, analysts, and IT executives.

Prerequisite: Instructor's consent

CMPS 601 Research Topics in Information Technology (3 credits)
This course offers the student the entry to self-directed scientific work. The student chooses a topic, does the literature review and presents his/her work in a written report along with a presentation. Topics would be chosen based on a literature review focused on emerging technologies in the field of IT not limited to such as Artificial Intelligence; Machine Learning; Human-Computer Interaction; Medical Informatics; Games; Networks & Communications; Image Processing; Simulation; Evolutionary Computation; Energy Informatics; Knowledge Management.

Prerequisite: Instructor’s consent

CMPS 602 Information Technology Auditing and Assurance (3 credits)
This course introduces the fundamentals of IT auditing and assurance services, core reasons why IT auditing is a specialized area of auditing, evolution of IT assurance, and the principle objectives of IT auditing and assurance services.

CMPS 603 Knowledge Management (3 credits)
This course covers the latest theory and practice of Knowledge Management (KM), with an integrated interdisciplinary presentation that makes sense of the confusingly wide variety of computer science and business KM perspectives arising simultaneously from artificial intelligence, information systems, and organizational behavior. It solidly covers the "hard" technical components of computer tools and technology for managing knowledge, without losing sight of the "soft" management needs and challenges in leveraging knowledge effectively within an organization. The course also critically evaluates the nature, computer representation, access, and utilization of knowledge versus information within a human context.
CMPS 604 Research Project (3 credits)
This course requires students to develop a research project. It gives students the opportunity to obtain, develop and demonstrate research skills in Information technology and related areas. A diverse range of projects can be proposed and each will require and develop different research skills. Having successfully completed this course, students shall be better prepared to undertake further research projects or to apply their research skills in an industry context.

Prerequisite: Instructor’s consent

CMPS 690 Master Thesis (6 credits)
This course addresses research question(s) of interest to the student. It consists of an integrated piece of work, with critical analyses of approaches and results, a software implementation of the proposed system (if applicable), and a discussion of further works.

Prerequisite: Successful completion of 18 credit hours and CMPS 520 (Research Methodology) if deemed necessary by the advisor, followed by approval of the department.
Abbasi Issa, Lecturer, MA, University of Manchester, Computer Science
Abbassi, Fethi, Assistant Professor, Ph.D, National Polytechnic Institute of Toulouse, France, Mechanical Engineering
Abdelkarim Ra ed, Lecturer, MA, University of Jordan, Physics,
Abdul Latheef, V., English Lab Instructor, M.A., University of Calicut, English
Abdul Jabbar, Mohammed M., Assistant Professor, M. Arch., University of Technology, Iraq, Interior Architecture
Abdul Rasheed Mohammed Aref, Assistant Professor, Ph.D, Dr. Babasaheb Ambedkar Marathwada University, Computer Science
Abo hassan Khedr, Associate Professor, Ph.D,University of Malaya,Kuala Lumpur
Solid state, physics
Abu Abdo, Ahmed, Assistant Professor, Ph.D, University of Idaho, USA, Civil Engineering
AbuIyada, Reem, Assistant Professor, Ph. D., Hull University, Social Work,
Adam, Khaled, Lecturer, B.S., Alexandria University, Egypt, Graphic Design
Adil Zaidi Syed Mohammed, Lecturer, Ph.D, AGRA University,English Language
Al Abdullah, Mufeed, Associate Professor, Ph. D., Indiana State University, English Literature
Al Ani, Ahmed Abdul Hameed Uthman, Instructor, M.A., Yarmouk University, English
Al Bany, Ramez, Assistant Professor, Ph. D., University of Portsmouth, Translation
Al Dheeb, Hussein, lecturer, M.A., International Islamic University, Islamic Law
Al Hawamdeh, Sameera, Instructor, M.A., Yarmouk University, English
Al Heyali, Rafa Yahya Hossen, Lecturer, M.A. University of Salford, English
Akaak Ali, Instructor, MA, Dhofar University, Management
Al Azzo, Wisam, Assistant Professor, Ph.D, University Putra Malaysia, Malaysia, Communication Network Engineering
Al Housary Tareq, Assistant Professor, Ph.D, University of Salford, Philosophy
Al Ibrahim Fatima, Instructor, MA, Dhofar University, English Language
Al Janabi, Abdullah, Assistant Professor, Ph.D, University of Stuttgart, Germany, Mechanical Engineering
Al Karadsheh Wesam, Instructor, MA, University of Jordan, Mathematics
Al Maashani Ahmed, Assistant Professor, Ph.D, Cairo University Education
Al Mashani, Salem B.M., lecturer, M.A., Yarmouk University, Arabic Language
Al Mashikhi Khalid, Lecturer, MA, University of Nebraska, Science
Al Muati Naef, Assistant Instructor, BS, Dhofar University, Computer Science
Al Mughrabi, Hyder Instructor, M.A., University of Jordan, Translation
Al Saqqaf Abdullah, Associate Professor, Ph.D, Univerisy of Exeter, Islamic & Arabic Studies
Al Yafaei Marwan, Lecturer, MA, University of Leeds, TESOL (Teaching English as a second language)
Al-Araji Asim, Visiting Professor, Ph.D, University of Maryland, managment
Alder Philip, Instructor, BA, the University of Warwick, English Language
Ali Ashraf, Instructor, MA, Bundelkhand University Computer Applications
Ali Sulaiman Moosa, Lecturer, MA, Sultan Qaboos University, TEFL
Amjad Ali Mohamed Yusuff, Lecturer, MA, Madurai Kamaraj University English Language
Atya Tariq, Assistant Professor, Ph.D, University of Juba, Philosophy in Management
Ayoub Abdel Aziz, Assistant Professor, Ph.D, Indiana University of Pennsylvania, TEFL
Bahaa Eldin, Magdi, Assistant Professor, MA, Charles Sturt University, United Arab Emirates, Visual and Performing Arts
Bello, Hugo, Assistant Professor, MID, Pratt Institute, USA, Industrial Design
Ben Khalifa Faical, Instructor, MA, Tunisia University, English literature
Bontha Umamaheswara Rao Instructor, MA, Osmania University, English Language
Cass Stephen Joseph, Lecturer, MA, The School for International Training, TEFL
Cazacova, Liudmila, Assistant Professor, MA, State Polytechnic University, Moldova, Engineering & Architecture
Charuvila Merin John, Instructor, MA, Mar Ivanios College, English Language
Chaudhry Shafique, Assistant Professor, Ph.D, Ajou University, Wireless Sensor Networks
Chedid Fouad, Professor, Ph.D, Illinois Institute of Technology, Computer Science
Chinta Bhagyalatha, Instructor, MA, Sathyabama University, Information Sys
Dwivedi Shradha, Instructor, MA, Government Autonomous Science College Jabalpur, Mathematics
El Sayed Abdelkader, Assistant Professor, Ph.D, Zagaziq University, Philosophy of Education
El-Shafee Ahmed, Assistant Professor, Ph.D, Indiana University of Pennsylvania, English Language
Eteiwi Adnann Instructor, MA, Yarmouk University, English
George Kolanchery, Instructor, MA, Annamalai University, English
Grami, Said, Assistant Professor, Ph.D, Quebec University, Canada, Control Engineering
Hankins Carmel, Instructor, MA, Annamalai University, Linguistics
Hassan, Heba, Assistant Professor, Ph.D, University of Ulster, United Kingdom, Electrical Power Engineering
Hussain Norlaila, Assistant Professor, Ph.D, University of Manchester, Interactive Systems
Hussein Muawya, Lecturer, MA, Gezira University, Economics
Ibrehem, Ahmmed, Assistant Professor, Ph.D, University of Malaya, Malaysia, Chemical Engineering
Irudayasamy Julius, Instructor, MA, Jiwaji University, English Language
Jaboob Fatima, Instructor, MA, Dhofar University, Curriculum & Methods of Teaching English Language
Jan Ridgway Theresa, Lecturer, MA, Girne Amirecan University, English Language
Jayaraman Seetha, Lecturer, Ph.D, Osmania University, English
Kadhim Khalid, Assistant Professor, Ph.D, University of Al Mustansiriyah, Accounting
Kamal Saba, Instructor, MA, Rohailkhand University, English Language
Kashoob Fatima, Instructor, MA, Dhofar University, Curriculum & Methods of Teaching English Language
Khan Khaleequazaman, Assistant Professor, Ph.D, Agra University, Statistics
Khan Razia, Instructor, MA, Chhatrapati Shahu Ji Maharaj University, Kanpur, English Language
Khan Mohammed Abdul Imran, Assistant Professor, Ph.D, Dr. Babasaheb Ambedkar Marathwada University, Commerce
Madanan Mukesh, Lecturer, MA, Portsmouth University, Science
Mahmood Syed Salman, Instructor, MA, University of Punjab, Mathematics
Mamlook, Rustom, Professor, Ph.D, New Mexico State University, USA, Electrical Engineering
Maruthapann Vearaiyan, Instructor, MA, Madurai Kamaraj University, Mathematics
Mathew Yevette, Instructor, MA, Kerala University, English Language
Menon Shanker, Associate Professor, Ph.D, University of South Florida, Philosophy in Management
Mohammed, Sheik, Instructor, MA, Anna University, India, Power Electronics and Drives Engineering
Mohammed Thabit, Assistant Professor, Ph.D, Cranfield University, Philosophy in Computing Systems
Momani Eba'a, Instructor, MA, Dhofar University, Teaching English Language
Moore Anne, Instructor, BA, University of Sussex, English Literature
Muhammed Yousoof Ismail, Lecturer, MA, Bharathidasan University, Computer Science
Mustafa Mohammad, Instructor, MA, Al Al Bayt University, Computer Science
Nair Maya Raju, Instructor, MA, University of Mumbai English Language
Najjar Ibrahim, Assistant Professor, Ph.D, University of Toronto, Philosophy
Nambiar Veetil Mahija, Instructor, MA, Sussex University, English Language
Narayanan Lakshmi, Associate Professor, Ph.D, University of South Florida, Psychology
Nour Elhadi Tarig, Assistant Professor, Ph.D, University Sains alayasia, Philosophy in Technology Management
Osmen Wafa, Assistant Professor, MA, High Institute of Fine Arts of Nabeul, Tunisia, Fine Arts
Parambath Imthias Ahamed, Assistant Professor, Ph.D, Indian Institute of Science, India, Electrical and Electronics Engineering
Raja Gopalan Sucharitha, Instructor, MA, Madurai Kamaraj University, English Language
Rawashdeh Edris, Associate Professor, Ph.D, Central Michigan University, Mathematics
Ridgway Anthony, Assistant Professor, PHD, University of Seville, Applied Linguistics
Risse Marielle, Assistant Professor, Ph.D, North Dakota University, English literature
S.Menon Hridhya, Instructor, MA, Calicut University, Arts
Sakhamuri Hridhya, Instructor, MA, Andhra University, English Language
Salim Badreldin, Assistant Professor, Ph.D, Sudan University of Science & Technology, Philosophy
Sanyal Shouvik, Assistant Professor, Ph.D, Magadh University, Marketing
Sayed Mohd Biju, Assistant Professor, Ph.D, MD University, Computer Science
Shaker Mawih, Assistant Professor, Ph.D, University of Al Mustansiriyyah, Accounting
Shareef Zahid, Instructor, MA, Quaid-I-Azam University, Mathematics
Sharma Rehana, Instructor, MA, Nagpur University, English literature
Sharma Amrendra Kumar, Assistant Professor, Ph.D, Bhagalpur University, English Language
Siddiqui Sabir Ali, Assistant Professor, Ph.D, AGRA University, Statistics
Sinha Gopal Krishna, Lecturer, MA, PATNA UNIVERSITY, Commerce
Steaphen Francis, Instructor, MA, Osmania University, English Language
Sulthan Thabit, Assistant Professor, Ph.D, Cranfield University, United Kingdom, Computing Systems Engineering
Thakur Vijay Singh, Assistant Professor, Ph.D, Rani Duragavati University, Linguistics
Uddin Mohammed Ahmar, Assistant Professor, Ph.D, Aligarh Muslim University, Philosophy
Ul Hassan Israr, Associate Professor, Ph.D, Manchester Metropolitan University, Chemistry
Wazwaz Aref, Associate Professor, Ph.D, Paul Sabatier University, France, Chemistry & Physics
Werner Astrid, Assistant Professor, MA, Royal College of Arts, United Kingdom, Graphic Design
Woerner Edwin Louis, Assistant Professor, Ph.D, University of Nebraska, Mathematics
Yedidi Sadananda, Instructor, MA, Andhra University, Arts
INDEX

A

ACADEMIC CALENDAR 2010-2011, 1, 2
Academic Probation, 26, 316
Academic Programs and Degrees Offered, 13
Academic Related Programs, 30
Academic Rules and Regulations, 19, 316
Academic Support Services, 31
Admission of University Employees, 10, 316
Admission Policies and Procedures, 10
Admission Requirements, 10, 171, 314
Application Procedure, 11, 315
Arabic Minors, 124
ARTS AND APPLIED SCIENCES, 14, 46
Assessment and Examinations, 20, 317
Athletics and Recreation, 35
Attendance and Withdrawal, 25

B

Background, 9
BOARD OF TRUSTEES, 3

C

Campus Facilities, 10
Career Guidance Services, 35
Center for Teaching and Learning (CTL), 31
Change of Grade, 22
Changing a Section, 24
CIVIL, 243
Class Attendance and Absence Rules, 25, 317
Classification of Students, 26
COLLEGE OF ARTS AND APPLIED SCIENCES, 14, 46
COLLEGE OF COMMERCE AND BUSINESS ADMINISTRATION, 14, 168
COLLEGE OF ENGINEERING, 15, 225
College requirements, 18, 51, 173, 229,
Computing and Networking Center (CNC), 32
Continuing Education Center (CEC), 31
Credit Load, 19, 317

D

Deadlines for Applications, 316
Dean’s Honor List, 23
DEPARTMENT OF CHEMICAL ENGINEERING, 231
DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING, 243
DEPARTMENT OF COMPUTER SCIENCE, 52
DEPARTMENT OF EDUCATION, 68
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, 255
DEPARTMENT OF GRAPHIC DESIGN, 294
DEPARTMENT OF LANGUAGES AND TRANSLATION, 91
DEPARTMENT OF MECHANICAL AND MECHATRONICS ENGINEERING, 276
DEPARTMENT OF PUBLIC RELATIONS AND EXTERNAL COOPERATION, 32
Diploma Program in English Language, 92
Disclosure Policy, 28
Dropping and Adding Courses, 316
Dropping and Adding of Courses, 24
Dropping and Adding Rules, 24

E

English Language Unit, 38, 40
ENVIRONMENTAL, 243
Examinations, 20, 317
Exemption from the Foundation English Program, 45

F

FACULTY LIST 2013-2014, 347
Failing and Repeating Courses, 23, 318
Fees and Expenses, 12
Final Year Project, 230
FOUNDATION PROGRAM, 37

G

Grading System, 19, 340
GRADUATE STUDIES, 313
Graduation Requirements, 15, 48, 171, 227
Graduation with Distinction or High Distinction, 23

I

Incomplete “I” Work, 21, 318
Interior Architecture, 294 296

L

Library, 32
Location and Climate, 10

M

Make-Up Examination, 20
Master in Management, 332
Master’s Project, 319
Mathematics and Information Technology Unit, 42
MATHEMATICS AND SCIENCES UNIT, 143
Missing Exams, 317
Performance Assessment, 20
Placement in the Foundation Program, 44
Promotion Policy and Exit from FP, 45

Readmission, 28
Removal of Academic Probation, 27
Repeating Courses, 23, 318
Risk Management, 33

Student Affairs, 34
Student Disciplinary System, 36
Student Employment Program, 34
Student Housing, 35
Substituting Courses, 24

Transfer, 29
Tuition Fees, 12, 319
Tuition Refund, 12, 320

University Council, 6
University requirements, 16, 172, 228

Withdrawal from a Semester, 26
Withdrawal from Courses, 25
Withdrawal from the University, 26